
DB2® Universal Database for OS/390 and z/OS

Image,

Audio,

and

Video

Extenders
Administration

and

Programming

Version

7

SC26-9947-01

���

DB2® Universal Database for OS/390 and z/OS

Image,

Audio,

and

Video

Extenders
Administration

and

Programming

Version

7

SC26-9947-01

���

Second

Edition

(March

2004)

This

edition

applies

to

Version

7

of

IBM

DB2

Universal

Database

for

OS/390

and

z/OS,

5675-DB2,

and

to

any

subsequent

releases

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

This

and

other

books

in

the

DB2

for

OS/390

and

z/OS

library

are

periodically

updated

with

technical

changes.

These

updates

are

made

available

to

licensees

of

the

product

on

CD-ROM

and

on

the

Web

(currently

at

www.ibm.com/software/data/db2/os390/library.html).

Check

these

resources

to

ensure

that

you

are

using

the

most

current

information.

©

Copyright

International

Business

Machines

Corporation

1998,

2001.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

″Notices″.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

About

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Who

should

use

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

How

to

use

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xix

Highlighting

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xx

How

to

read

the

syntax

diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xx

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xxi

Part

1.

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Exploiting

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Powerful

new

ways

to

search

for

information

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

The

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

The

SDK

and

run-time

environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Using

the

extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Example

1:

Retrieving

a

video

by

its

characteristics

.

.

.

.

.

.

.

.

.

.

. 6

Example

2:

Searching

for

images

by

content

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Operating

environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Chapter

2.

DB2

extender

concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Object-oriented

concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Large

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

User-defined

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

User-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

UDF

and

UDT

names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Triggers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Extender

data

structures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Administrative

support

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Handles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

QBIC

catalogs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Chapter

3.

How

the

extenders

work

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

An

extender

scenario

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Preparing

a

database

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Preparing

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Altering

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Inserting

data

into

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Selecting

data

from

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Displaying

and

playing

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Updating

data

in

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Deleting

data

from

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Part

2.

Administering

image,

audio,

and

video

data

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Chapter

4.

Planning

for

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Workload

management

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

The

number

of

WLM

environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

©

Copyright

IBM

Corp.

1998,

2001

iii

Performance

objectives

for

WLM

environments

.

.

.

.

.

.

.

.

.

.

.

. 32

Security

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Access

to

image,

audio,

and

video

objects

in

tables

.

.

.

.

.

.

.

.

.

. 32

Access

to

QBIC

catalog

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Access

to

content

in

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

EXECUTE

authority

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

The

MMDBSYS

user

ID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Authority

to

administer

the

extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Table

space

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Backup

and

recovery

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Chapter

5.

Administration

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Administration

tasks

you

can

perform

with

the

DB2

Extenders

.

.

.

.

.

.

. 37

Chapter

6.

Preparing

data

objects

for

extender

data

.

.

.

.

.

.

.

.

.

. 41

Enabling

database

servers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Specifying

table

space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Specifying

WLM

environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Specifying

external

security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Enabling

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Enabling

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Disabling

data

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Chapter

7.

Tracking

data

objects

and

media

files

.

.

.

.

.

.

.

.

.

.

. 51

Checking

the

status

of

data

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Finding

table

entries

that

reference

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Finding

files

referenced

by

table

entries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Checking

if

media

files

exist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Chapter

8.

Granting

and

revoking

privileges

on

administrative

support

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Part

3.

Programming

for

image,

audio,

and

video

data

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Chapter

9.

Programming

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Using

extender

UDFs

and

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Tasks

you

can

perform

with

extender

UDFs

and

APIs

.

.

.

.

.

.

.

.

.

.

. 60

Sample

table

for

extender

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Before

you

begin

programming

for

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

. 61

Including

extender

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Specifying

UDF

and

UDT

names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Transmitting

large

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Handling

return

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Preparing

a

DB2

extender

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Preparing

a

DB2

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Additional

steps

for

DB2

extender

applications

.

.

.

.

.

.

.

.

.

.

.

. 68

Unicode

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Chapter

10.

Storing,

retrieving,

and

updating

objects

.

.

.

.

.

.

.

.

. 71

Image,

audio,

and

video

formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Image

conversion

options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Storing

an

image,

audio,

or

video

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

DB2Image,

DB2Audio,

and

DB2Video

UDF

formats

.

.

.

.

.

.

.

.

.

. 74

DB2ImageA,

DB2AudioA,

and

DB2VideoA

UDF

formats

.

.

.

.

.

.

.

.

. 76

Storing

an

object

that

resides

on

the

client

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

iv

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Storing

an

object

that

resides

on

the

server

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Specifying

database

or

file

storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Identifying

the

format

for

storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Storing

an

object

with

user-supplied

attributes

.

.

.

.

.

.

.

.

.

.

.

. 81

Storing

a

thumbnail

(image

and

video

only)

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Storing

a

comment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Retrieving

an

image,

audio,

or

video

object

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Content

UDF

formats

for

retrieval

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Retrieving

an

object

to

the

client

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Retrieving

an

object

to

a

server

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Retrieving

and

using

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Retrieving

comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Updating

an

image,

audio,

or

video

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Content

UDF

formats

for

updating

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

ContentA

UDF

formats

for

updating

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Replace

UDF

formats

for

updating

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

ReplaceA

UDF

formats

for

updating

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Updating

an

object

from

the

client

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Updating

an

object

from

the

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Specifying

database

or

file

storage

for

updates

.

.

.

.

.

.

.

.

.

.

.

. 97

Identifying

the

format

for

update

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Updating

an

object

with

user-supplied

attributes

.

.

.

.

.

.

.

.

.

.

.

. 99

Updating

a

thumbnail

(image

and

video

only)

.

.

.

.

.

.

.

.

.

.

.

. 100

Updating

a

comment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Chapter

11.

Displaying

or

playing

an

image,

audio,

or

video

object

.

.

. 103

Using

the

display

or

play

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Identifying

a

display

or

play

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Specifying

BLOB

or

file

content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Specifying

a

wait

indicator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Displaying

a

thumbnail-size

image

or

video

frame

.

.

.

.

.

.

.

.

.

.

. 105

Displaying

a

full-size

image

or

video

frame

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Playing

an

audio

or

video

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Chapter

12.

Querying

images

by

content

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

How

to

query

by

image

content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Managing

QBIC

catalogs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Creating

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Opening

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Adding

a

feature

to

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Removing

a

feature

from

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Retrieving

information

about

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

. 112

Manually

cataloging

a

column

of

images

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Recataloging

images

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Closing

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Deleting

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

QBIC

catalog

sample

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Building

queries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Specifying

a

query

string

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Using

a

query

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Issuing

queries

by

image

content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Querying

images

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Retrieving

an

image

score

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

QBIC

query

sample

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Part

4.

Reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

Contents

v

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Schema

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

User-defined

types

(distinct

types)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

User-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

AlignValue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

AspectRatio

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

BitsPerSample

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

BytesPerSec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Comment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

CompressType

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

ContentA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

DB2Audio

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

DB2AudioA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

DB2Image

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

DB2ImageA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

DB2Video

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

DB2VideoA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Duration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

Filename

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

FindInstrument

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

FindTrackName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

FrameRate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

GetInstruments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

GetTrackNames

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Height

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Importer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

ImportTime

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

MaxBytesPerSec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

NumAudioTracks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

NumChannels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

NumColors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

NumFrames

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

NumVideoTracks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

QbScoreFromName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

QbScoreFromStr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

QbScoreTBFromName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

QbScoreTBFromStr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Replace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

ReplaceA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

SamplingRate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Thumbnail

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

TicksPerQNote

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

TicksPerSec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Updater

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

UpdateTime

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Width

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Chapter

14.

Application

programming

interfaces

.

.

.

.

.

.

.

.

.

.

. 219

DBaAdminGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

DBaAdminGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

DBaAdminIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

DBaDisableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

vi

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBaDisableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

DBaDisableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

DBaEnableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

DBaEnableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

DBaEnableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

DBaGetError

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

DBaGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

DBaGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

DBaIsColumnEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

DBaIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

DBaIsServerEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

DBaIsTableEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

DBaPlay

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

DBaPrepareAttrs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

DBiAdminGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

DBiAdminGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

DBiAdminIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

DBiBrowse

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

DBiDisableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

DBiDisableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

DBiDisableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

DBiEnableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

DBiEnableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

DBiEnableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

DBiGetError

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

DBiGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

DBiGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

DBiIsColumnEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

DBiIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

DBiIsServerEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

DBiIsTableEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

DBiPrepareAttrs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

DBvAdminGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

DBvAdminGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

DBvAdminIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

DBvDisableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

DBvDisableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

DBvDisableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

DBvEnableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

DBvEnableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

DBvEnableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

DBvGetError

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

DBvGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

DBvGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

DBvIsColumnEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

DBvIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

DBvIsServerEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

DBvIsTableEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

DBvPlay

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

DBvPrepareAttrs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

QbAddFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

QbCatalogColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

QbCloseCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

QbCreateCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

QbDeleteCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

QbGetCatalogInfo

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

Contents

vii

QbListFeatures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

QbOpenCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

QbQueryAddFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

QbQueryCreate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

QbQueryDelete

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

QbQueryGetFeatureCount

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

QbQueryGetString

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

QbQueryListFeatures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

QbQueryNameCreate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

QbQueryNameDelete

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

QbQueryNameSearch

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

QbQueryRemoveFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

QbQuerySearch

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

QbQuerySetFeatureData

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

QbQuerySetFeatureWeight

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

QbQueryStringSearch

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

QbReCatalogColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

QbRemoveFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

Chapter

15.

Administration

commands

for

the

client

.

.

.

.

.

.

.

.

. 357

Entering

DB2

Extender

administration

commands

.

.

.

.

.

.

.

.

.

.

. 357

Getting

online

help

for

DB2

Extender

commands

.

.

.

.

.

.

.

.

.

.

.

. 358

ADD

QBIC

FEATURE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

CATALOG

QBIC

COLUMN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 360

CLOSE

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

CREATE

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

DELETE

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

DISABLE

COLUMN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

DISABLE

SERVER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

DISABLE

TABLE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

ENABLE

COLUMN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

ENABLE

SERVER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

ENABLE

TABLE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

GET

EXTENDER

STATUS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

GET

INACCESSIBLE

FILES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

GET

QBIC

CATALOG

INFO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

GET

REFERENCED

FILES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

GRANT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

OPEN

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

QUIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

REMOVE

QBIC

FEATURE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

REVOKE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

TERMINATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

Chapter

16.

Diagnostic

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

Handling

UDF

return

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

Handling

API

return

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

SQLSTATE

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 392

Diagnostic

tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

Start

tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

Stop

tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

Reformat

trace

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

Appendix

A.

Setting

environment

variables

for

DB2

Extenders

.

.

.

.

. 413

How

environment

variables

are

used

to

resolve

file

names

.

.

.

.

.

.

.

. 413

viii

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

How

environment

variables

are

used

to

identify

display

or

play

programs

414

Setting

environment

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Setting

environment

variables

in

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 414

Setting

environment

variables

in

AIX

and

Solaris

clients

.

.

.

.

.

.

.

. 415

Setting

environment

variables

in

Windows

clients

.

.

.

.

.

.

.

.

.

.

. 416

Appendix

B.

Sample

programs

and

media

files

.

.

.

.

.

.

.

.

.

.

. 417

Sample

programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

Sample

image,

audio,

and

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

Programming

interface

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 429

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 431

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 433

Contents

ix

x

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Figures

1.

A

multimedia

database

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

2.

A

query

that

accesses

videos

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

3.

An

application

that

accesses

and

plays

videos

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

4.

Searching

for

images

by

content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

5.

An

application

that

searches

for

images

by

content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

6.

Administrative

support

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

7.

Handles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

8.

The

employee

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

9.

The

employee

table

with

an

audio

column

added

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

10.

Inserting

data

into

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

11.

Selecting

data

from

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

12.

Displaying

and

playing

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

13.

Updating

data

in

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

14.

Sample

code

that

enables

a

database

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

15.

Sample

code

that

enables

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

16.

Sample

code

that

enables

a

column

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

17.

Sample

code

that

checks

if

a

database

server

is

enabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

18.

Sample

code

that

checks

if

a

file

is

referenced

by

user

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

19.

Sample

code

that

gets

a

list

of

referenced

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

20.

A

table

used

in

DB2

extender

programming

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

21.

An

application

that

uses

a

DB2

extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

22.

Query

by

image

content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

23.

QBIC

catalog

sample

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

24.

QBIC

query

sample

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

25.

Sample

JCL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

26.

Sample

Bind

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 424

27.

Setting

up

the

CLI.INI

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

28.

Sample

STEPLIB

concatenation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 425

©

Copyright

IBM

Corp.

1998,

2001

xi

xii

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Tables

1.

DB2

Extender

concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

2.

User-defined

functions

created

by

the

Image

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

3.

User-defined

functions

created

by

the

Audio

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

4.

Character

with

respective

extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

5.

Administration

tasks

and

facilities

for

the

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

6.

Tasks

you

can

perform

with

DB2

extender

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

7.

The

path

name

of

the

listfile.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

8.

The

name

of

the

listfile.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

9.

Formats

that

can

be

processed

by

the

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

10.

Image

conversion

options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

11.

Attributes

managed

by

the

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

12.

APIs

that

display

or

play

objects.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

13.

QBIC

Feature

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

14.

Feature

values

that

can

be

specified

in

query

string

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

15.

The

QbImageSource

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

16.

What

the

Image

Extender

examines

in

QbImageSource

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

17.

APIs

that

retrieve

information

about

a

query

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

18.

APIs

that

query

cataloged

images

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

19.

User-defined

types

created

by

the

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

20.

DB2

Extender

UDFs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

21.

The

extenders

that

support

AlignValue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

22.

The

extenders

that

support

AspectRatio

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

23.

The

extenders

that

support

BitPerSample

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

24.

The

extenders

that

support

BytesPerSec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

25.

The

extenders

that

support

Comment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

26.

The

extenders

that

support

CompressType

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

27.

The

extenders

that

support

Content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

28.

The

extenders

that

support

ContentA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

29.

The

extenders

that

support

DB2Audio

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

30.

The

extenders

that

support

DB2AudioA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

31.

The

extenders

that

support

DB2Image

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

32.

The

extenders

that

support

DB2ImageA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

33.

The

extenders

that

support

DB2Video

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

34.

The

extenders

that

support

DB2VideoA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

35.

The

extenders

that

support

Duration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

36.

The

extenders

that

support

Filename

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

37.

The

extenders

that

support

FindInstrument

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

38.

The

extenders

that

support

FindTrackName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

39.

The

extenders

that

support

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

40.

The

extenders

that

support

FrameRate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

41.

The

extenders

that

support

GetInstruments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

42.

The

extenders

that

support

GetTrackNames

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

43.

The

extenders

that

support

Height

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

44.

The

extenders

that

support

Importer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

45.

The

extenders

that

support

ImportTime

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

46.

The

extenders

that

support

MaxBytesPerSec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

47.

The

extenders

that

support

NumAudioTracks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

48.

The

extenders

that

support

NumChannels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

49.

The

extenders

that

support

NumColors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

50.

The

extenders

that

support

NumFrames

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

51.

The

extenders

that

support

NumVideoTracks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

52.

The

extenders

that

support

QbScoreFromName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

53.

The

extenders

that

support

QbScoreFromStr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

©

Copyright

IBM

Corp.

1998,

2001

xiii

54.

The

extenders

that

support

QbScoreTBFromName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

55.

The

extenders

that

support

QbScoreTBFromStr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

56.

The

extenders

that

support

Replace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

57.

The

extenders

that

support

ReplaceA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

58.

The

extenders

that

support

SamplingRate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

59.

The

extenders

that

support

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

60.

The

extenders

that

support

Thumbnail

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

61.

The

extenders

that

support

TicksPerQNote

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

62.

The

extenders

that

support

TicksPerSec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

63.

The

extenders

that

support

Updater

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

64.

The

extenders

that

support

UpdateTime

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

65.

The

extenders

that

support

Width

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

66.

The

extenders

that

support

DBaAdminGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

67.

The

names

of

the

inaccessible

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

68.

The

extenders

that

support

DBaAdminGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

69.

The

names

of

reference

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

70.

The

extenders

that

support

DBaAdminIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

71.

The

names

of

reference

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

72.

The

extenders

that

support

DBaDisableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

73.

The

files

with

the

audio

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

74.

The

extenders

that

support

DBaDisableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

75.

The

files

that

contain

audio

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

76.

The

extenders

that

support

DBaDisableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

77.

The

files

with

audio

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

78.

The

extenders

that

support

DBaEnableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

79.

The

files

with

audio

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

80.

The

extenders

that

support

DBaEnableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

81.

The

files

with

audio

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

82.

The

extenders

that

support

DBaEnableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

83.

The

files

with

audio

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

84.

The

extenders

that

support

DBaGetError

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

85.

The

files

with

audio

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

86.

The

extenders

that

support

DBaGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

87.

The

files

with

audio

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

88.

The

extenders

that

support

DBaGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

89.

The

audio

data

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

90.

The

extenders

that

support

DBaIsColumnEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

91.

The

audio

data

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

92.

The

extenders

that

support

DBaIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

93.

The

audio

data

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

94.

The

extenders

that

support

DBaIsServerEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

95.

The

audio

data

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

96.

The

extenders

that

support

DBaIsTableEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

97.

The

audio

data

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

98.

The

extenders

that

support

DBaPlay

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

99.

The

audio

data

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

100.

The

extenders

that

support

DBaPrepareAttrs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

101.

The

audio

data

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

102.

The

extenders

that

support

DBiAdminGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

103.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

104.

The

extenders

that

support

DBiAdminGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

105.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

106.

The

extenders

that

support

DBiAdminIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

107.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

108.

The

extenders

that

support

DBiBrowse

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

109.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

xiv

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

110.

The

extenders

that

support

DBiDisableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

111.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

112.

The

extenders

that

support

DBiDisableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

113.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

114.

The

extenders

that

support

DBiDisableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

115.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

116.

The

extenders

that

support

DBiEnableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

117.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

118.

The

extenders

that

support

DBiEnableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

119.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

120.

The

extenders

that

support

DBiEnableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

121.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

122.

The

extenders

that

support

DBiGetError

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

123.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

124.

The

extenders

that

support

DBiGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

125.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

126.

The

extenders

that

support

DBiGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

127.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

128.

The

extenders

that

support

DBiIsColumnEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

129.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

130.

The

extenders

that

support

DBiIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

131.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

132.

The

extenders

that

support

DBiIsServerEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

133.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

134.

The

extenders

that

support

DBiIsTableEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

135.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

136.

The

extenders

that

support

DBiPrepareAttrs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

137.

The

image

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

138.

The

extenders

that

support

DBvAdminGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

139.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

140.

The

extenders

that

support

DBvAdminGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

141.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

142.

The

extenders

that

support

DBvAdminIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

143.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

144.

The

extenders

that

support

DBvDisableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

145.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

146.

The

extenders

that

support

DBvDisableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

147.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

148.

The

extenders

that

support

DBvDisableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

149.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

150.

The

extenders

that

support

DBvEnableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

151.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

152.

The

extenders

that

support

DBvEnableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

153.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

154.

The

extenders

that

support

DBvEnableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

155.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

156.

The

extenders

that

support

DBvGetError

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

157.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

158.

The

extenders

that

support

DBvGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

159.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

160.

The

extenders

that

support

DBvGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

161.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

162.

The

extenders

that

support

DBvIsColumnEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

163.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

164.

The

extenders

that

support

DBvIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

165.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

Tables

xv

166.

The

extenders

that

support

DBvIsServerEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

167.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

168.

The

extenders

that

support

DBvIsTableEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

169.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

170.

The

extenders

that

support

DBvPlay

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

171.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

172.

The

extenders

that

support

DBvPrepareAttrs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

173.

The

video

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

174.

The

extenders

that

support

QbAddFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

175.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

176.

The

extenders

that

support

QbCatalogColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

177.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

178.

The

extenders

that

support

QbCloseCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

179.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

180.

The

extenders

that

support

QbCreateCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

181.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

182.

The

extenders

that

support

QbDeleteCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

183.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

184.

The

extenders

that

support

QbGetCatalogInfo

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

185.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

186.

The

extenders

that

support

QbListFeatures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

187.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

188.

The

extenders

that

support

QbOpenCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

189.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

190.

The

extenders

that

support

QbQueryAddFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

191.

The

image

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

192.

The

extenders

that

support

QbQueryCreate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

193.

The

image

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

194.

The

extenders

that

support

QbQueryDelete

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

195.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

196.

The

extenders

that

support

QbQueryGetFeatureCount

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

197.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

198.

The

extenders

that

support

QbQueryGetString

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

199.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

200.

The

extenders

that

support

QbQueryListFeatures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

201.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

202.

The

extenders

that

support

QbQueryNameCreate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

203.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

204.

The

extenders

that

support

QbQueryNameDelete

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

205.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

206.

The

extenders

that

support

QbQueryNameSearch

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

207.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

208.

The

extenders

that

support

QbQueryRemoveFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

209.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

210.

The

extenders

that

support

QbQuerySearch

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

211.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

212.

The

extenders

that

support

QbQuerySetFeatureData

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

213.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

214.

The

extenders

that

support

QbQuerySetFeatureWeight

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

215.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

216.

The

extenders

that

support

QbQueryStringSearch

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

217.

The

query

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

218.

The

extenders

that

support

QbReCatalogColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

219.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

220.

The

extenders

that

support

QbRemoveFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

221.

The

image

API

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

xvi

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

222.

Entering

DB2

Extender

administration

commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

223.

The

extenders

that

support

the

ADD

QBIC

FEATURE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

224.

The

extenders

that

support

CATALOG

QBIC

COLUMN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 360

225.

The

extenders

that

support

CLOSE

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

226.

The

extenders

that

support

CREATE

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

227.

The

extenders

that

support

DELETE

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

228.

The

extenders

that

support

DISABLE

COLUMN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

229.

The

extenders

that

support

DISABLE

SERVER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

230.

The

extenders

that

support

DISABLE

TABLE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

231.

The

extenders

that

support

ENABLE

COLUMN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

232.

The

extenders

that

support

ENABLE

SERVER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

233.

The

extenders

that

support

ENABLE

TABLE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

234.

The

extenders

that

support

GET

EXTENDER

STATUS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

235.

The

extenders

that

support

GET

INACCESSIBLE

FILES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

236.

The

extenders

that

support

GET

QBIC

CATALOG

INFO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

237.

The

extenders

that

support

GET

REFERENCED

FILES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

238.

The

extenders

that

support

GRANT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

239.

The

extenders

that

support

OPEN

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

240.

The

extenders

that

support

QUIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

241.

The

extenders

that

support

REMOVE

QBIC

FEATURE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

242.

The

extenders

that

support

REVOKE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

243.

The

extenders

that

support

TERMINATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

244.

SQLSTATE

codes

and

associated

message

numbers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

245.

Environment

variables

for

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 413

Tables

xvii

xviii

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

About

this

book

This

book

describes

how

to

use

DB2

Extenders™

for

z/OS™

to

prepare

and

maintain

a

DB2

UDB

server

for

z/OS

for

image,

audio,

or

video

data.

It

also

describes

how

you

can

use

user-defined

functions

(UDFs)

and

application

programming

interfaces

(APIs)

provided

by

DB2

Extenders

for

z/OS

to

access

and

manipulate

these

types

of

data.

By

incorporating

UDFs

in

your

program’s

SQL

statements,

and

incorporating

APIs,

you

can

access

nontraditional

data,

such

as

images

and

video

clips,

and

traditional

numeric

data

and

character

data.

References

in

this

book

to

″DB2″

refer

to

DB2

UDB.

Who

should

use

this

book

This

book

is

intended

for

DB2

database

administrators

who

are

familiar

with

DB2

administration

concepts,

tools,

and

techniques.

This

book

is

also

intended

for

DB2

application

programmers

who

are

familiar

with

SQL

and

with

one

or

more

programming

languages

that

can

be

used

for

DB2

application

programs.

This

book

is

for

people

who

will

work

with

the

DB2

Image,

Audio,

and

Video

Extenders

for

z/OS.

People

who

work

with

the

Text

Extender

for

z/OS

should

see

DB2

Text

Extender

Administration

and

Programming.

How

to

use

this

book

This

book

is

structured

as

follows:

“Part

1.

Introduction”

This

part

gives

an

overview

of

the

DB2

Extenders

for

z/OS.

Read

this

part

if

you

are

new

to

administering

or

programming

with

the

DB2

Extenders

for

z/OS.

“Part

2.

Administering

Image,

Audio,

and

Video

Data”

This

part

discusses

planning

considerations

for

DB2

Extenders

for

z/OS.

It

also

describes

how

to

prepare

and

maintain

a

DB2

UDB

for

z/OS

database

server

for

image,

audio,

and

video

data.

Read

this

part

if

you

need

to

plan

for

and

administer

a

DB2

UDB

for

z/OS

database

server

that

contains

image,

audio,

or

video

data.

“Part

3.

Programming

for

Image,

Audio,

or

Video

Data”

This

part

describes

how

to

use

the

DB2

extender

for

z/OS

UDFs

and

APIs

to

request

operations

on

image,

audio,

or

video

data.

It

also

discusses

considerations

for

building

DB2

extender

for

z/OS

applications.

Read

this

part

if

you

need

to

access

and

manipulate

image,

audio,

or

video

data

in

a

DB2

application

program.

“Part

4.

Reference”

This

part

presents

reference

information

for

DB2

extender

for

z/OS

UDFs,

APIs,

administrative

commands,

and

diagnostic

information

such

as

messages

and

codes.

Read

this

part

if

you

are

familiar

with

DB2

extender

for

z/OS

concepts

and

tasks,

but

need

information

about

a

specific

DB2

extender

for

z/OS

UDF,

API,

command,

message,

or

code.

“Appendixes”

The

appendixes

describe:

©

Copyright

IBM

Corp.

1998,

2001

xix

–

How

to

set

environment

variables

that

are

used

by

the

DB2

Extenders

for

z/OS

to

find

files

and

to

identify

display

or

player

programs

for

image,

audio,

and

video

objects

–

How

to

install

and

use

sample

programs

and

media

files

that

are

provided

with

the

Extenders

Highlighting

conventions

This

book

uses

the

following

conventions:

Bold

Bold

text

is

used

to

indicate

a

definition

of

a

new

term.

Italics

Italics

indicate

variable

parameters

that

are

to

be

replaced

with

a

value,

or

it

emphasizes

words

that

are

used

in

text.

UPPERCASE

Uppercase

letters

indicate:

v

Data

types

v

Directory

names

v

Field

names

v

API

calls

v

Commands

v

Keywords

v

Variable

names

Example

Example

text

indicates

a

system

message

or

value

you

type.

Example

text

is

also

used

for

coding

examples.

How

to

read

the

syntax

diagrams

Throughout

this

book,

command,

and

SQL

syntax

are

described

using

syntax

diagrams.

Read

the

syntax

diagrams

as

follows:

v

Read

the

syntax

diagrams

from

left

to

right

and

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

statement.

The

───�

symbol

indicates

that

the

statement

syntax

is

continued

on

the

next

line.

The

�───

symbol

indicates

that

a

statement

is

continued

from

the

previous

line.

The

──��

symbol

indicates

the

end

of

a

statement.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

required

item

��

v

Optional

items

appear

below

the

main

path.

��

optional

item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

xx

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

��

required

choice1

required

choice2

��

If

choosing

none

of

the

items

is

an

option,

the

entire

stack

appears

below

the

main

path.

��

optional

choice1

optional

choice2

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

stacked

items.

��

�

optional

choice1

optional

choice2

��

v

Keywords

appear

in

uppercase

(for

example,

/DB2IMAGE:).

They

must

be

spelled

exactly

as

shown.

Variables

appear

in

lowercase

(for

example,

srcpath).

They

represent

user-supplied

names

or

values

in

the

syntax.

v

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

Accessibility

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products

enable

users

to:

v

Use

assistive

technologies

such

as

screen

reader

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

by

using

only

a

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

Assistive

technology

products,

such

as

screen

readers,

function

with

the

z/OS

user

interfaces.

Consult

the

documentation

for

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Online

documentation

is

available

in

the

DB2

Information

Center,

which

is

an

accessible

format

when

used

with

assistive

technologies

such

as

screen

reader

or

screen

magnifier

software.

The

DB2

Information

Center

for

z/OS

solutions

is

available

at

the

following

Web

site:

http://publib.boulder.ibm.com/infocenter/db2zhelp.

About

this

book

xxi

xxii

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Part

1.

Introduction

Chapter

1.

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Exploiting

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Powerful

new

ways

to

search

for

information

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

The

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

The

SDK

and

run-time

environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Using

the

extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Example

1:

Retrieving

a

video

by

its

characteristics

.

.

.

.

.

.

.

.

.

.

. 6

Example

2:

Searching

for

images

by

content

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Operating

environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Chapter

2.

DB2

extender

concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Object-oriented

concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Large

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

User-defined

types

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

User-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

UDF

and

UDT

names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Current

path

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Overloaded

function

names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Triggers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Extender

data

structures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Administrative

support

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Handles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

QBIC

catalogs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Chapter

3.

How

the

extenders

work

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

An

extender

scenario

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Preparing

a

database

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Preparing

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Altering

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Inserting

data

into

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Selecting

data

from

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Displaying

and

playing

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Updating

data

in

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Deleting

data

from

a

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

©

Copyright

IBM

Corp.

1998,

2001

1

2

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

1.

Overview

DB2

Universal

Database™

Server

for

z/OS

(DB2

UDB

for

z/OS)

is

a

powerful,

object-relational

database

manager.

It

stores

and

protects

traditional

numeric

and

character

data,

as

well

as

large,

complex

objects

(LOBs).

DB2

Extenders

for

z/OS,

which

are

features

of

DB2

UDB

for

z/OS,

help

you

exploit

DB2

UDB

for

z/OS

’s

object-relational

features.

(In

this

book,

“DB2”

refers

to

DB2

UDB

for

z/OS,

and

either

“DB2

Extenders”

or

simply

“extenders”

refers

to

DB2

Extenders

for

z/OS.)

The

extenders

define

distinct

data

types

and

special

functions

for

image,

audio,

video,

and

text

objects.

By

doing

this,

the

Extenders

save

you

the

time

and

effort

of

defining

these

data

types

and

functions

in

your

applications.

The

data

types

and

functions

are

available

through

SQL.

Because

of

that,

the

Extenders

give

your

applications

a

single

point

of

access

to

any

or

all

of

these

types

of

data,

along

with

traditional

numeric

and

character

data.

Exploiting

DB2

The

DB2

Extenders

exploit

the

object-oriented

features

of

DB2.

In

particular,

with

DB2

you

can:

v

Store

LOBs

of

up

to

2

gigabytes

in

a

DB2

database.

v

Define

distinct

data

types

for

these

large,

complex

objects.

You

use

these

user-defined

types

(UDTs)

to

identify

the

type

of

data

that

is

represented

by

an

object,

for

example,

an

image

or

an

audio.

v

Define

specific

functions

that

can

be

requested

on

a

user-defined

type

of

data.

For

example,

you

can

define

a

function

to

count

the

number

of

colors

in

an

image

or

to

get

the

sampling

rate

of

an

audio.

You

request

these

user-defined

functions

(UDFs)

in

an

SQL

statement

in

the

same

way

as

other

SQL

functions.

The

DB2

Extenders

create

UDTs

and

UDFs

for

image,

audio,

video,

and

text

objects.

The

UDTs

and

UDFs

can

be

important

aids

in

helping

you:

v

Develop

applications.

Because

the

Extenders

define

the

data

types

and

functions,

you

do

not

have

to

define

them

in

your

applications.

v

Ensure

consistency.

The

same

set

of

extender

UDTs

and

UDFs

are

available

to

all

of

your

applications.

This

offers

a

ready-made

level

of

consistency

that

might

otherwise

be

difficult

to

achieve

across

applications

that

handle

large

objects.

v

Create

powerful

queries.

Because

the

UDFs

are

requested

in

the

same

way

as

other

SQL

functions,

your

applications

can

include

multi-data-type

queries.

One

SQL

statement

can

access

image,

audio,

video,

and

text

objects,

together

with

traditional

numeric

and

character

data.

You

can

specify

UDFs

and

UDTs

in

embedded

SQL

statements

as

well

as

in

DB2

Call

Level

Interface

(DB2

CLI)

calls.

And

because

the

objects

that

the

Extenders

process

can

be

stored

in

a

DB2

database,

the

same

security,

integrity,

and

recovery

protections

are

in

place

for

those

objects

as

for

traditional

data

types

stored

in

the

database.

Note

The

Image,

Audio,

and

Video

Extenders

for

OS/390

and

z/OS

do

not

support

the

DB2

UDB

for

OS/390

and

z/OS

data

sharing

function

in

a

Parallel

Sysplex

environment.

©

Copyright

IBM

Corp.

1998,

2001

3

Powerful

new

ways

to

search

for

information

The

DB2

Extenders

give

your

applications

a

lot

of

flexibility

in

searching

for

information.

Your

applications

can

search

for

objects

that

are

associated

with

traditional

types

of

data

that

are

stored

in

a

database.

For

example,

they

can

search

for

an

audio

clip

by

its

description

or

by

the

date

it

was

recorded.

Your

applications

can

also

search

for

objects

by

their

inherent

characteristics,

such

as

the

playing

time

of

a

video

clip.

The

Extenders

automatically

determine

and

store

these

characteristics

for

use

in

searches.

Your

applications

can

even

search

for

images

by

content.

Imagine

an

application

that

uses

visual

examples

to

search

for

images.

With

such

an

application,

users

could

select

an

example

image

and

have

the

application

find

other

images

that

have

colors

or

textures

similar

to

those

in

the

example.

With

DB2

Extenders’

Query

by

Image

Content

(QBIC®)

capability,

you

can

create

applications

that

search

for

images

in

this

visual

way.

The

DB2

Extenders

The

DB2

Extenders

comprise

a

separate

Image

Extender,

Audio

Extender,

Video

Extender,

and

Text

Extender.

This

book

covers

the

Image,

Audio,

and

Video

Extenders.

All

further

references

to

“extenders”

or

“DB2

Extenders”

in

this

book

refer

to

the

Image,

Audio,

and

Video

Extenders,

unless

otherwise

noted.

For

information

about

the

Text

Extender,

see

Text

Extender

Administration

and

Programming.

For

information

about

the

XML

Extender,

see

XML

Extender

Administration

and

Programming.

The

SDK

and

run-time

environments

The

DB2

Extenders

installation

package

provides

a

Software

Developers

Kit

(SDK)

and

client

and

server

run-time

environments.

You

can

develop

DB2

extender

applications

on

a

client

or

server

machine

in

which

you

have

installed

the

DB2

extender

SDK.

You

can

run

DB2

extender

applications

in

a

server

machine

that

includes

the

DB2

extender

client

run-time

code

and

server

run-time

code.

(The

client

run-time

code

is

automatically

installed

when

you

install

the

server

run-time

code.)

You

can

also

run

DB2

extender

applications

on

a

client

machine

in

which

the

DB2

extender

client

run-time

code

is

installed.

If

you

run

an

extender

application

from

a

client

machine,

you

need

to

ensure

that

a

connection

can

be

made

to

the

server.

Using

the

extenders

You

can

request

the

extender

UDFs

in

a

DB2

application

program,

or

you

can

request

them

interactively

using

tools

such

as

SPUFI

from

an

z/OS

client

or

using

the

DB2

command-line

processor

from

a

workstation

client.

The

extenders

also

provide

the

following

application

programming

interfaces

(APIs):

v

Administrative

APIs

to

prepare

and

maintain

a

database

server

for

image,

audio,

and

video

data.

v

Display

and

play

APIs

to

display

images

and

play

video

and

audio

clips.

v

QBIC

APIs

to

prepare

images

for,

and

request

searches

by

content.

(A

content

search

can

also

be

requested

through

UDFs.)

New

ways

to

search

4

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

The

DB2

Extenders

also

provide

a

command-line

processor,

referred

to

as

the

db2ext

command-line

processor,

that

you

use

to

issue

administrative

commands.

These

commands

access

administrative

APIs.

You

can

start

the

db2ext

command-line

processor

from

a

workstation

client,

or

start

it

from

an

z/OS

client

using

z/OS

Open

Edition

services.

Examples

An

advertising

agency

maintains

a

DB2

database

of

its

advertisements.

In

the

past,

the

agency

stored

numeric

and

character

data

about

each

ad

campaign,

such

as

the

name

of

the

client

and

the

date

that

an

advertisement

was

completed.

With

the

installation

of

DB2

UDB

and

the

DB2

Extenders,

the

agency

now

also

stores

the

content

of

the

advertisements

in

the

database.

This

includes

images

of

print

advertisements,

videos

of

television

advertisements,

and

recordings

of

radio

advertisements.

As

Figure

1

shows,

all

of

the

related

advertising

information

is

in

one

database

table

that

is

named

ADS.

Figure

1

contains

image,

audio

and

video

data

as

well

as

traditional

data

types.

Figure

1.

A

multimedia

database

table.

The

table

contains

image,

audio,

and

video

data

as

well

as

traditional

data

types.

A

video,

audio,

and

image

are

shown.

Using

the

Extenders

Chapter

1.

Overview

5

Example

1:

Retrieving

a

video

by

its

characteristics

An

account

manager

in

the

advertising

agency

needs

to

see

the

video

advertisements

created

for

the

IBM

account

in

1997,

but

only

advertisements

whose

duration

is

30

seconds

or

less.

Figure

2

shows

a

query

that

accesses

the

videos.

Notice

that

the

Video

Extender

UDFs

named

Filename

and

Duration

in

the

query.

The

query

returns

the

file

names

of

the

desired

videos.

The

account

manager

can

then

start

his

favorite

video

player

and

play

the

content

of

each

video

file.

Figure

2

is

an

example

of

a

query

that

the

account

manager

can

issue

interactively.

More

typically,

the

account

manager

would

use

an

application

program

to

find

and

play

videos.

For

example,

Figure

3

shows

some

key

elements

of

such

an

application

coded

in

C.

The

application

retrieves

the

video

file

names

in

a

DB2

host

variable

named

hvVid_fname.

Also

notice

that

the

application

uses

a

play

API,

named

DBvPlay,

to

play

the

videos.

SELECT

FILENAME(ADS_VIDEO)

FROM

ADS

WHERE

CLIENT=’IBM’

AND

SHIP_DATE>=’01/01/1997’

AND

DURATION(ADS_VIDEO)

<=30

Figure

2.

A

query

that

accesses

videos

#include

<dmbvideo.h>

int

count

=

0;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvClient[30];

/*client

name*/

char

hvCampaign[30];

/*campaign

name*/

char

hvSdate[8];

/*ship

date*/

char

hvVid_fname

[251]

/*video

file

name*/

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

DECLARE

c1

CURSOR

FOR

SELECT

CLIENT,

CAMPAIGN,

SHIP_DATE,

FILENAME(ADS_VIDEO)

FROM

ADS

WHERE

CLIENT='IBM'

AND

SHIP_DATE≥'01/01/1997'

AND

DURATION(ADS_VIDEO)≤30

FOR

FETCH

ONLY;

Figure

3.

An

application

that

accesses

and

plays

videos

(Part

1

of

2)

Using

the

Extenders

6

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Example

2:

Searching

for

images

by

content

A

graphic

illustrator

in

the

advertising

agency

is

developing

a

new

print

advertisement

for

a

client.

The

illustrator

wants

to

use

a

particular

shade

of

blue

in

the

background

of

the

advertisement,

and

wants

to

see

if

the

color

has

been

used

before

in

printed

advertisements

created

by

the

agency.

To

do

that,

the

graphic

illustrator

runs

an

application

that

searches

for

images

by

content.

The

images

are

stored

in

a

database

table

(see

Figure

1

on

page

5).

The

application

asks

the

user

to

supply

a

visual

example,

that

is,

an

image

that

demonstrates

the

color

of

interest.

The

application

then

analyzes

the

color

in

the

example

and

finds

images

whose

color

best

matches

the

example.

Figure

4

shows

a

visual

example

and

the

retrieved

images

that

most

closely

match

its

color.

Figure

4

shows

searching

for

images

by

content.

Figure

5

on

page

8

shows

some

key

elements

of

the

application.

Notice

that

the

application

uses

a

QBIC

API

named

QbQueryCreate

to

create

a

QBIC

query,

QbQueryAddFeature

and

QbQuerySetFeatureData

to

add

the

color

selection

to

the

EXEC

SQL

OPEN

c1;

for

(;;){

EXEC

SQL

FETCH

c1

INTO

:hvClient,

:hvCampaign,

:hvSdate,

:hvVid_fname;

if

(SQLCODE

!=

0)

break;

printf("\nRecord

%d:\n",

++count);

printf("Client

=

'%s'\n",

hvClient);

printf("Campaign

=

'%s'\n",

hvCampaign);

printf("Sdate

=

'%s'\n",

hvSdate);

rc=DBvPlay(NULL,MMDB_PLAY_FILE,hvVid_fname,MMDB_PLAY_WAIT);

}

EXEC

SQL

CLOSE

c1;

Figure

3.

An

application

that

accesses

and

plays

videos

(Part

2

of

2)

Figure

4.

Searching

for

images

by

content.

A

visual

example

is

used

to

search

for

images

by

average

color.

Using

the

Extenders

Chapter

1.

Overview

7

query,

QbQuerySearch

to

issue

the

query,

and

QbQueryDelete

to

delete

the

query.

The

application

also

uses

a

graphical

API,

named

DBiBrowse,

to

display

the

retrieved

images.

Figure

5

shows

an

application

that

searches

for

images

by

content.

#include

<dmbqbqpi.h>

#define

MaxQueryReturns

10

static

SQLHENV

henv;

static

SQLHDBC

hdbc;

static

SQLHSTMT

hstmt;

static

SQLRETURN

rc;

void

main(int

argc,

char*

argv[])

{

char

line[4000];

char*

handles[MaxQueryReturns];

QbQueryHandle

qHandle=0;

QbResult

results[MaxQueryReturns];

SQLINTEGER

count;

SQLINTEGER

resultType=qbiArray;

SQlAllocEnv(&henv);

SQLAllocConnect(henv,

&hdbc);

rc

=

SQLConnect(hdbc,

(SQLCHAR*)"qtest",

SQL_NTS,

(SQLCHAR*)"",

SQL_NTS,

(SQLCHAR*)"",

SQL_NTS);

if

(argc

!=2)

{

printf("usage:

query

colorname\n");

exit(1);

}

QbImageSource

is;

is.type

=

qbiSource_AverageColor;

/*

run

the

get

color

subroutine

*/

getColor(argv[1],

is.average.Color);

QbQueryCreate(&qhandle);

QbQueryAddFeature(qhandle,

"QbColorFeatureClass");

QbQuerySetFeatureData(qhandle,

"QbColorFeatureClass",&is);

QbQuerySearch(qhandle,

"ADS",

"ADS_IMAGE",

10,

0,

resultType

&count,

results);

for

(int

j

=

0;

j

<count;

j++)

{

printf(j,":\n");

DBiBrowse("usr/local/bin/xv

%s",

MMDB_PLAY_HANDLE,

handles[j],

MMDB_PLAY_WAIT);

}

Figure

5.

An

application

that

searches

for

images

by

content

(Part

1

of

2)

Using

the

Extenders

8

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Operating

environments

The

DB2

Extenders

Version

8

operate

with

DB2

Universal

Database

Version

8

in

a

client/server

environment.

The

minimum

version

and

release

levels

that

are

required

for

the

supported

platforms

are

the

same

as

those

for

DB2

Universal

Database

Version

8.

The

supported

client

platforms

are:

z/OS,

AIX,

Windows

NT®

and

later,

Windows

XP,

Windows

2000,

and

Solaris

Operating

Environment.

The

supported

server

is

z/OS.

QbQueryDelete(qhandle);

SQLDisconnect(hdbc);

SQLFreeConnect(hdbc);

SQLFreeEnv(henv);

}

Figure

5.

An

application

that

searches

for

images

by

content

(Part

2

of

2)

Using

the

Extenders

Chapter

1.

Overview

9

Using

the

Extenders

10

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

2.

DB2

extender

concepts

This

chapter

describes

concepts

that

you

need

to

understand

before

using

the

DB2

Extenders.

Table

1.

DB2

Extender

concepts

Topic

See

Object-oriented

concepts

Page

11

Extender

data

structures

Page

14

For

more

information

about

object-oriented

concepts,

see

the

DB2

Application

Programming

and

SQL

Guide.

Object-oriented

concepts

DB2

supports

object

orientation,

the

concept

that

anything,

real

or

abstract,

can

be

represented

in

an

application

as

an

object

that

comprises

a

set

of

operations

and

data

values.

For

example,

a

document

can

be

represented

by

a

document

object

that

comprises

document

data

and

operations

that

can

be

performed

on

the

document,

such

as

filing,

sending,

and

printing.

A

video

clip

can

be

represented

by

a

video

object

that

comprises

video

data

and

operations

such

as

playing

the

video

clip

or

finding

a

specific

video

frame.

Like

real-world

objects,

representational

objects

have

attributes.

For

example,

a

video

object

can

be

given

attributes

such

as

compression

type

and

sampling

rate.

Objects

can

be

grouped

together

into

types.

Objects

of

the

same

type

have

the

same

attributes

and

behave

in

the

same

way,

that

is,

they

are

associated

with

the

same

operations.

For

example,

if

a

video

type

is

defined

to

have

a

compression

type

attribute,

then

all

objects

of

the

video

type

have

that

attribute.

If

an

object

of

the

video

type

can

be

played,

then

all

objects

of

the

video

type

can

be

played.

DB2’s

support

for

object

orientation

allows

you

to

store

instances

of

object

types

in

columns

of

tables,

and

operate

on

them

by

means

of

functions

in

SQL

statements.

For

example,

you

can

store

video

objects

in

a

table

column

and

operate

on

them

using

SQL

functions.

In

addition,

you

can

share

the

attributes

and

behavior

of

the

stored

objects

among

your

applications.

All

the

applications

“see”

the

same

set

of

attributes

and

behavior

for

the

same

object

type.

Video

objects

are

typically

large

and

complex.

So

too

are

image

and

audio

objects.

As

part

of

its

support

for

object

orientation,

DB2

allows

you

to

store

large

objects

(LOBs)

in

a

database.

It

also

gives

you

ways

to

define

and

manipulate

LOBs

through

user-defined

types

(UDTs),

user-defined

functions

(UDFs),

and

triggers.

Large

objects

DB2

allows

you

to

store

large

objects

(LOBs)

in

a

database

as:

v

Binary

large

objects

(BLOBs)

v

Character

large

objects

(CLOBs)

v

Double-byte

character

large

objects

(DBCLOBs)

BLOBs

are

binary

strings.

Image,

audio,

and

video

objects

are

stored

as

BLOBs

in

a

DB2

database.

CLOBs

are

character

strings

made

up

of

single-byte

characters

with

an

associated

code

page.

This

data

type

is

used

for

text

objects

that

contain

©

Copyright

IBM

Corp.

1998,

2001

11

single-byte

characters.

DBCLOBs

are

character

strings

made

up

of

double-byte

characters

with

an

associated

code

page.

This

data

type

is

used

for

text

objects

where

double-byte

characters

are

used.

Each

LOB

can

be

up

to

two

gigabytes

in

length;

however,

DB2

allows

many

LOB

columns

per

table.

Because

of

its

size,

a

LOB’s

content

is

not

directly

stored

in

the

user’s

table.

Instead

each

LOB

is

identified

in

the

table

by

a

large

object

descriptor.

The

descriptor

is

used

to

access

the

large

object

stored

elsewhere

on

the

disk.

The

DB2

Extenders

give

you

the

added

flexibility

of

keeping

the

content

of

a

LOB

in

a

file

and

pointing

to

it

from

the

database.

You

make

this

designation

when

you

use

a

DB2

extender

to

store

an

object.

The

file

must

be

in

a

file

system

that

is

compatible

with

z/OS

UNIX

services,

for

example,

a

hierarchical

file

system

(HFS).

User-defined

types

Image,

video,

and

audio

objects

are

represented

in

the

database

as

BLOBs.

A

user-defined

type

(UDT),

also

known

as

a

distinct

type,

provides

a

way

to

differentiate

one

BLOB

from

another.

For

example,

a

UDT

can

be

created

for

image

objects

and

another

for

audio

objects.

Though

stored

as

BLOBs,

the

image

and

audio

objects

are

treated

as

types

distinct

from

BLOBs

and

distinct

from

each

other.

You

create

UDTs

with

an

SQL

CREATE

DISTINCT

TYPE

statement.

For

example,

suppose

you

are

developing

an

application

that

processes

geographic

features

on

maps.

You

can

create

a

distinct

type

named

map

for

map

objects

as

follows:

CREATE

DISTINCT

TYPE

map

AS

BLOB

(1M)

The

map-type

object

is

represented

internally

as

a

BLOB

of

1

megabyte

in

length,

but

is

treated

as

a

distinct

type

of

object.

You

can

use

UDTs

like

SQL

built-in

types

to

describe

the

data

stored

in

columns

of

tables.

In

the

following

example,

a

table

is

created

with

a

column

designed

to

hold

map-type

data:

CREATE

TABLE

places

(locid

INTEGER

NOT

NULL,

location

CHAR

(50),

grid

map)

Each

DB2

extender

creates

a

UDT

for

its

type,

that

is,

image,

audio,

and

video.

User-defined

functions

A

user-defined

function

(UDF)

is

a

way

to

create

SQL

functions

and

thus

add

to

the

set

of

built-in

functions

supplied

with

DB2.

In

particular,

you

can

create

UDFs

that

perform

operations

unique

to

image,

audio,

and

video

objects.

For

example,

you

can

create

UDFs

to

get

the

compression

format

of

a

video

or

return

the

sampling

rate

of

an

audio.

This

provides

a

way

of

defining

the

behavior

of

objects

of

a

particular

type.

Video

objects,

for

example,

behave

in

terms

of

the

functions

created

for

the

video

type,

and

image

objects

behave

in

terms

of

the

functions

created

for

the

image

type.

You

create

UDFs

with

an

SQL

CREATE

FUNCTION

statement.

The

statement

specifies,

among

other

things,

the

data

type

to

which

the

UDF

can

be

applied.

For

example,

the

following

statement

creates

a

UDF

named

map_scale

that

calculates

the

scale

of

a

map.

Notice

that

the

UDF

identifies

map

as

the

data

type

to

which

it

Object-oriented

concepts

12

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

can

be

applied.

The

code

that

implements

the

function

is

written

in

C

and

is

identified

in

the

EXTERNAL

NAME

clause:

CREATE

FUNCTION

map_scale

(map)

RETURNS

SMALLINT

EXTERNAL

NAME

'SCALEMAP'

LANGUAGE

C

PARAMETER

STYLE

DB2SQL

NO

SQL

DETERMINISTIC

NO

EXTERNAL

ACTION

UDFs

can

be

used

in

an

SQL

statement

in

the

same

way

as

built-in

functions.

In

the

following

example,

the

map_scale

UDF

is

used

in

an

SQL

SELECT

statement

to

return

the

scale

of

a

map

stored

in

a

table

column

named

grid:

SELECT

map_scale

(grid)

FROM

places

WHERE

location=’SAN

JOSE,

CALIFORNIA’

Each

DB2

extender

creates

a

set

of

UDFs

for

its

type,

that

is,

image-specific,

audio-specific,

and

video-specific

UDFs.

You

use

these

UDFs

in

SQL

statements

to

request

extender

functions

such

as

storing

an

image

in

a

table,

getting

the

frame

rate

of

a

video,

or

adding

comments

about

an

audio.

UDF

and

UDT

names

The

full

name

of

a

DB2

function

is

schema-name.function-name,

where

schema-name

is

an

identifier

that

provides

a

logical

grouping

for

SQL

objects.

The

schema

name

for

DB2

extender

UDFs

is

MMDBSYS.

The

MMDBSYS

schema

name

is

also

the

qualifier

for

the

DB2

extender

UDTs.

You

can

use

the

full

name

anywhere

you

refer

to

a

UDF

or

a

UDT.

For

example,

MMDBSYS.CONTENT

identifies

a

UDF

whose

schema

name

is

MMDBSYS

and

whose

function

name

is

CONTENT.

MMDBSYS.DB2IMAGE

identifies

a

UDT

whose

schema

is

MMDBSYS

and

whose

distinct-type

name

is

DB2IMAGE.

You

can

also

omit

the

schema

name

when

you

refer

to

a

UDF

or

UDT;

in

this

case,

DB2

uses

the

current

path

to

determine

the

function

or

distinct

data

type

that

you

want.

Current

path

The

current

path

is

an

ordered

list

of

schema

names.

DB2

uses

the

order

of

schema

names

in

the

list

to

resolve

references

to

functions

and

distinct

data

types.

You

can

specify

the

current

path

by

specifying

the

SQL

statement

SET

CURRENT

PATH.

This

sets

the

current

path

in

the

CURRENT

PATH

special

register.

For

the

DB2

Extenders,

it

is

a

good

idea

to

add

the

mmdbsys

schema

to

the

current

path.

This

allows

you

to

enter

DB2

extender

UDF

and

UDT

names

without

having

to

prefix

them

with

mmdbsys.

The

following

is

an

example

of

adding

the

mmdbsys

schema

to

the

current

path:

SET

CURRENT

PATH

=

mmdbsys,

CURRENT

PATH

Do

not

add

mmdbsys

as

the

first

schema

in

the

current

path

if

you

log

on

as

mmdbsys:

If

you

log

on

with

the

mmdbsys

user

ID,

the

first

schema

in

your

current

path

is

set

to

mmdbsys.

If

you

then

try

to

set

the

first

schema

in

the

current

path

to

mmdbsys

with

a

SET

CURRENT

PATH

statement,

your

current

path

will

begin

with

two

mmdbsys

schemas—an

error

condition.

Overloaded

function

names

Function

names

can

be

overloaded.

This

means

that

multiple

UDFs,

even

in

the

same

schema,

can

have

the

same

name.

However,

two

functions

cannot

have

the

Object-oriented

concepts

Chapter

2.

DB2

extender

concepts

13

same

signature.

A

signature

is

the

qualified

function

name

concatenated

with

the

defined

data

types

of

all

the

function

parameters.

Triggers

A

trigger

defines

a

set

of

actions

that

are

activated

by

a

change

to

a

table.

Triggers

can

be

used

to

perform

actions

such

as

validating

input

data,

automatically

generating

a

value

for

a

newly

inserted

row,

reading

from

other

tables

for

cross-referencing

purposes,

or

writing

to

other

tables

for

auditing

purposes.

Triggers

are

often

used

for

integrity

checking

or

to

enforce

business

rules.

You

create

a

trigger

using

an

SQL

CREATE

TRIGGER

statement.

The

following

statement

creates

a

trigger

to

enforce

a

business

rule

regarding

parts

inventory.

The

trigger

reorders

a

part

when

the

number

on

hand

is

less

than

ten

percent

of

the

maximum

number

stocked.

CREATE

TRIGGER

reorder

AFTER

UPDATE

OF

on_hand,

max_stocked

ON

parts

REFERENCING

NEW

AS

n_row

FOR

EACH

ROW

MODE

DB2SQL

WHEN

(n_row.on_hand

<

0.10

*

n_row.max_stocked)

BEGIN

ATOMIC

VALUES(issue_ship_request(n_row.max_stocked

-

n_row.on_hand,

n_row.partno));

END

The

DB2

Extenders

create

and

maintain

administrative

support

tables

to

record

information

about

image,

audio,

and

video

data

stored

in

a

database

server.

(See

“Administrative

support

tables”

for

more

information

about

these

tables.)

The

Extenders

use

triggers

to

update

these

tables

when

image,

audio,

or

video

data

is

inserted

into,

updated

in,

or

deleted

from

a

database

server.

Extender

data

structures

The

Image,

Audio,

and

Video

Extenders

create

and

use

administrative

support

tables

and

handles

to

store

and

access

image,

audio,

and

video

data.

Administrative

support

tables

Administrative

support

tables,

also

called

metadata

tables,

contain

the

information

that

the

Extenders

need

to

process

user

requests

on

image,

audio,

and

video

objects.

The

information

in

administrative

support

tables

is

often

referred

to

as

“metadata”.

As

Figure

6

on

page

15

illustrates,

some

of

the

administrative

support

tables

identify

user

tables

and

columns

that

are

enabled

for

an

extender.

These

tables

reference

other

administrative

support

tables

that

are

created

to

hold

attribute

information

about

objects

in

enabled

columns.

In

these

tables,

the

Extenders

maintain

information

about

attributes

that

are

unique

to

a

particular

extender-defined

data

type,

as

well

as

information

about

attributes

that

are

common

across

extender

data

types.

For

example,

the

Image

Extender

maintains

information

about

the

width,

height,

and

number

of

colors

in

an

image,

as

well

as

information

about

attributes

common

to

image,

audio,

and

video

objects,

such

as

the

identification

of

the

person

who

imported

the

object

into

the

database

or

who

last

updated

the

object.

The

administrative

support

tables

can

also

contain

the

contents

of

stored

objects

in

BLOB

format.

Alternatively,

an

object

can

be

kept

in

a

file

and

referenced

by

the

Object-oriented

concepts

14

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

administrative

support

tables.

For

example,

a

video

clip

can

be

stored

as

a

BLOB

in

an

administrative

support

table

or

kept

in

a

file

that

is

referenced

by

the

table.

A

special

set

of

administrative

support

tables

for

image

objects

holds

data

about

visual

features

such

as

average

color

and

texture.

These

tables

comprise

a

QBIC

catalog.

See

“QBIC

catalogs”

on

page

16

for

more

information.

Figure

6

shows

the

administrative

support

tables.

Handles

When

you

store

an

image,

audio,

or

video

object

in

a

user

table,

the

object

is

not

actually

stored

in

the

table.

Instead,

an

extender

creates

a

character

string

called

a

handle

to

represent

the

object,

and

stores

the

handle

in

the

table.

The

extender

stores

the

object

in

an

administrative

support

table,

or

stores

a

file

identifier

in

an

administrative

support

table

if

you

keep

the

content

of

the

object

in

a

file.

It

also

stores

the

object’s

attributes

and

handle

in

administrative

support

tables.

In

this

way,

the

extender

can

link

the

handle

stored

in

a

user

table

with

the

object

information

stored

in

the

administrative

support

tables.

Figure

7

on

page

16

illustrates

the

information

stored

for

two

images

in

a

user

table.

Figure

6.

Administrative

support

tables

Data

structures

Chapter

2.

DB2

extender

concepts

15

QBIC

catalogs

A

QBIC

catalog

is

a

set

of

administrative

support

tables

that

holds

data

about

the

visual

features

of

images.

The

Image

Extender

uses

this

data

to

search

for

images

by

content.

You

create

a

QBIC

catalog

for

each

column

of

images

in

a

user

table

that

you

want

to

make

available

for

searching

by

content.

The

Image

Extender

records

in

an

administrative

support

table

the

association

between

user

table

columns

and

QBIC

catalogs.

When

you

create

a

QBIC

catalog

you

identify

the

features

for

which

you

want

the

Image

Extender

to

analyze,

store,

and

later

query

data.

You

can

also

add

or

drop

features

from

a

QBIC

catalog

after

the

catalog

is

created.

A

QBIC

catalog

can

hold

data

for

the

following

image

features:

Average

color

The

sum

of

the

color

values

for

all

pixels

in

an

image

divided

by

the

number

of

pixels

in

the

image.

(A

pixel

is

the

smallest

element

of

an

image

that

can

be

assigned

color

and

intensity.)

For

example,

if

50%

of

an

image

consists

of

blue

pixels

and

the

other

50%

red

pixels,

the

image

has

an

average

color

value

of

purple.

Average

color

is

used

to

search

for

images

that

have

a

predominant

color.

If

an

image

has

a

predominant

color,

the

average

color

will

be

similar

to

the

predominant

color.

Histogram

color

Measures

the

distribution

of

colors

in

an

image

against

a

spectrum

of

64

colors.

For

each

of

the

64

colors,

histogram

color

identifies

the

percentage

of

pixels

in

an

image

that

have

that

color.

For

example,

the

histogram

color

of

an

image

might

be

40%

white

Figure

7.

Handles

Data

structures

16

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

pixels,

50%

blue,

and

10%

red;

none

of

the

pixels

in

the

image

have

any

of

the

remaining

colors

in

the

histogram

spectrum.

Histogram

color

is

used

to

search

for

images

that

have

a

variety

of

colors.

Positional

color

The

average

color

value

for

the

pixels

in

a

specified

area

in

an

image.

For

example,

the

upper

right-hand

corner

of

an

image

might

show

a

bright

yellow

sun;

the

positional

color

of

this

area

of

the

image

is

bright

yellow.

Positional

color

is

used

to

search

for

images

that

have

a

predominant

color

in

a

particular

area.

Texture

Measures

the

coarseness,

contrast,

and

directionality

of

an

image.

Coarseness

indicates

the

size

of

repeating

items

in

an

image

(for

example,

pebbles

versus

boulders).

Contrast

identifies

the

brightness

variations

in

an

image

(light

versus

dark).

Directionality

indicates

whether

a

direction

predominates

in

an

image

(as

in

the

vertical

direction

of

a

picket

fence)

or

does

not

predominate

(as

in

an

image

of

sand).

Texture

is

used

to

search

for

images

that

have

a

particular

pattern.

To

make

an

image

available

for

searching

by

content,

you

catalog

the

image.

When

you

catalog

an

image,

the

Image

Extender

analyzes

the

image,

by

computing

the

feature

values

for

the

image,

and

stores

the

values

in

a

QBIC

catalog.

When

you

search

for

an

image

by

content,

your

query

identifies

one

or

more

features

for

the

search

(such

as

average

color),

a

source

for

each

feature

(such

as

an

example

image),

and

a

target

set

of

cataloged

images.

The

Image

Extender

computes

the

feature

value

of

the

source

and

compares

it

to

the

cataloged

feature

values

for

the

target

images.

It

then

computes

a

score

that

indicates

how

similar

the

feature

values

of

the

target

images

are

to

the

source.

You

can

have

the

Image

Extender

return

the

images

whose

features

are

most

similar

to

the

source.

The

Image

Extender

will

return

the

handle

of

each

image

and

the

image

score.

You

can

also

have

the

Image

Extender

return

only

the

score

of

a

single

image.

Data

structures

Chapter

2.

DB2

extender

concepts

17

Data

structures

18

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

3.

How

the

extenders

work

The

DB2

Extenders

do

a

lot

of

work

to

handle

image,

audio,

and

video

data

requests.

A

good

way

to

illustrate

how

the

Extenders

work

is

to

examine

what

they

do

when

you

use

them.

This

chapter

describes

a

scenario

that

includes

the

Image

and

Audio

Extenders.

It

discusses

the

operations

that

users

perform

and

how

the

Extenders

respond.

An

extender

scenario

The

personnel

department

of

a

company

wants

to

create

a

personnel

database

(in

DB2)

that

includes

pictures

of

each

employee.

A

Database

with

pictures:

As

Figure

8

shows,

an

employee

table

in

the

database

will

contain

the

identification

and

name

of

each

employee,

as

well

as

the

employee’s

picture.

Figure

8

contains

the

identification

and

name

of

each

employee.

To

prepare

the

personnel

database

for

image

processing,

a

system

administrator,

that

is,

someone

with

SYSADM

authority,

creates

the

database

and

enables

the

database

server

for

use

by

the

Image

Extender.

A

database

administrator

(DBA),

or

someone

with

equivalent

authority,

creates

the

employee

table

and

then

enables

it

and

the

employee

picture

column

for

use

by

the

Image

Extender.

A

Database

with

sound:

After

the

personnel

database

and

employee

table

are

prepared

for

image

processing,

the

personnel

department

decides

to

add

an

audio

recording

for

each

employee

to

the

table.

This

is

shown

in

Figure

9

on

page

20.

Figure

8.

The

employee

table

©

Copyright

IBM

Corp.

1998,

2001

19

The

system

administrator

alters

the

table

by

adding

a

new

column

and

enables

the

database,

table,

and

column

for

use

by

the

Audio

Extender.

Users

in

the

personnel

department

then

insert

data

into,

select

and

display

data

from,

update

data

in,

and

delete

data

from

the

table.

Preparing

a

database

server

The

system

administrator

creates

the

personnel

database

for

use

by

the

Image

Extender.

What

the

system

administrator

does:

The

system

administrator

creates

the

personnel

database

in

the

locally-attached

database

server

using

the

following

SQL

statement:

CREATE

DATABASE

personnl;

/*create

database*/

The

system

administrator

enables

the

database

server

for

use

by

the

Image

Extender.

The

system

administrator

uses

the

db2ext

command-line

processor

to

issue

the

following

command:

ENABLE

SERVER

FOR

DB2IMAGE

WLM

ENVIRONMENT

DMBWLM1

What

happens:

In

response

to

the

ENABLE

SERVER

command,

the

Image

Extender:

v

Creates

a

user-defined

type

that

is

named

DB2IMAGE

for

image

objects.

v

Creates

administrative

support

tables

for

image

objects.

v

Creates

user-defined

functions

for

image

objects.

The

UDFs

will

run

in

the

MVS™

Workload

Manager

(WLM)

environment

that

is

named

DMBWLM1.

Because

no

table

space

specification

was

made

in

the

ENABLE

SERVER

command,

table

spaces

in

the

default

storage

group

for

the

database

server

will

be

used

to

hold

administrative

support

tables

and

their

indexes.

Because

no

external

security

specification

was

made

in

the

ENABLE

SERVER

command,

the

default,

EXTERNAL

SECURITY

DB2,

is

assumed.

The

UDFs

are

listed

in

Table

2

on

page

21.

Figure

9.

The

employee

table

with

an

audio

column

added

Scenario

20

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Table

2.

User-defined

functions

created

by

the

Image

Extender

UDF

name

Description

Comment

Get

or

update

user

comments

Content

Get

or

update

the

content

of

an

image

ContentA

Update

the

content

of

an

image

with

user-supplied

attributes

DB2Image

Store

the

content

of

an

image

DB2ImageA

Store

the

content

of

an

image

with

user-supplied

attributes

Filename

Get

the

name

of

the

file

that

contains

an

image

Format

Get

the

image

format

(for

example,

GIF)

Height

Get

the

height

of

an

image

in

pixels

Importer

Get

the

user

ID

of

the

importer

the

of

an

image

ImportTime

Get

the

timestamp

when

an

image

was

imported

NumColors

Get

the

number

of

colors

used

in

an

image

Replace

Update

the

content

and

user

comments

for

an

image

ReplaceA

Update

the

content

and

user

comments

for

an

image

with

user-supplied

attributes

Size

Get

the

size

of

an

image

in

bytes

Thumbnail

Get

a

thumbnail-sized

version

of

an

image

Updater

Get

the

user

ID

of

the

updater

of

an

image

UpdateTime

Get

the

timestamp

when

an

image

was

updated

Width

Get

the

width

of

an

image

in

pixels

Preparing

a

table

The

DBA

creates

the

employee

table

and

enables

it

and

the

picture

column

for

use

by

the

Image

Extender.

What

the

DBA

does:

For

convenience,

the

DBA

adds

the

mmdbsys

schema

in

the

current

path

by

using

the

following

SQL

statement:

SET

CURRENT

PATH

=

mmdbsys,

CURRENT

PATH

This

allows

UDT

and

UDF

names

to

be

specified

without

having

to

prefix

them

with

the

mmdbsys

schema

name.

(The

mmdbsys

schema

does

not

have

to

be

the

first

schema

in

the

function

path.)

See

“UDF

and

UDT

names”

on

page

13

for

more

information

about

UDT

and

UDF

names.

The

DBA

creates

the

employee

table

by

issuing

the

following

SQL

statement:

CREATE

TABLE

employee

/*name

of

the

table*/

(id

CHAR(6)

/*employee

identification*/

name

VARCHAR(40)

/*employee

name*/

picture

DB2IMAGE)

/*employee

picture*/

The

DBA

then

uses

the

db2ext

command-line

processor

to

issue

the

following

commands:

ENABLE

TABLE

employee

FOR

DB2IMAGE

USING

TBSPACE1,,LTBSPACE1

ENABLE

COLUMN

employee

picture

FOR

DB2IMAGE

What

happens:

In

response

to

the

ENABLE

TABLE

command,

the

Image

Extender:

Preparing

a

database

server

Chapter

3.

How

the

extenders

work

21

v

Identifies

the

employee

table

for

use.

v

Creates

administrative

support

tables

that

hold

attribute

information

for

image

objects

in

enabled

columns.

The

administrative

support

tables

are

stored

in

a

table

space

that

is

named

TBSPACE1.

v

Creates

an

auxiliary

LOB

table

to

hold

LOB

data

for

enabled

columns.

The

LOB

table

is

stored

in

a

LOB

table

space

that

is

named

LTBSPACE1.

v

Creates

indexes

for

the

administrative

support

tables

and

the

auxiliary

LOB

table.

v

Default

table

spaces

will

be

used

for

indexes

on

the

administrative

support

tables

table

space

and

the

LOB

data

table

space.

In

response

to

the

ENABLE

COLUMN

command,

the

Image

Extender:

v

Identifies

the

picture

column

for

use.

v

Creates

triggers.

These

triggers

update

various

administrative

support

tables

in

response

to

insert,

update,

and

delete

operations

on

the

employee

table.

Altering

a

table

The

DBA

adds

an

audio

column

to

the

employee

table

and

enables

it

for

use

by

the

Audio

Extender.

What

the

administrator

does:

The

system

administrator

uses

the

db2ext

command-line

processor

to

enable

the

database

server

for

use

by

the

Audio

Extender:

ENABLE

SERVER

FOR

DB2AUDIO

WLM

ENVIRONMENT

DMBWLM1

Notice

that

the

DBA

specifies

the

same

command

parameters

to

enable

the

server

for

use

by

the

Audio

Extender

as

for

the

Image

Extender.

In

general,

whatever

parameters

are

specified

on

the

ENABLE

SERVER

command

for

one

extender

should

be

specified

for

the

other

extenders.

The

DBA

then

issues

the

following

SQL

statement

to

alter

the

employee

table.

The

DBA

uses

the

DB2

command

line

processor

to

issue

the

SQL

statement.

ALTER

TABLE

employee

/*name

of

the

table*/

ADD

voice

DB2AUDIO

/*employee

audio

recording*/

The

DBA

uses

the

db2ext

command-line

processor

to

enable

the

employee

table

and

the

voice

column

for

use

by

the

Audio

Extender:

ENABLE

TABLE

employee

FOR

DB2AUDIO

USING

TBSPACE1,,LTBSPACE1

ENABLE

COLUMN

employee

voice

FOR

DB2AUDIO

What

happens:

In

response

to

the

ENABLE

SERVER

command,

the

Audio

Extender:

v

Creates

a

user-defined

type

that

is

named

DB2AUDIO

for

audio

objects.

v

Creates

administrative

support

tables

for

audio

objects.

v

Creates

user-defined

functions

for

audio

objects.

The

UDFs

will

run

in

the

WLM

environment

that

is

named

DMBWLM1.

DB2’s

default

table

space

will

be

used

to

hold

the

administrative

support

tables

and

their

indexes.

EXTERNAL

SECURITY

DB2

is

assumed.

The

UDFs

are

listed

in

Table

3.

Table

3.

User-defined

functions

created

by

the

Audio

Extender

UDF

name

Description

AlignValue

Get

the

bytes

per

sample

value

of

the

audio

Preparing

a

table

22

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Table

3.

User-defined

functions

created

by

the

Audio

Extender

(continued)

UDF

name

Description

BitsPerSample

Get

the

number

of

bits

used

to

represent

the

audio

BytesPerSec

Get

the

average

number

of

bytes

per

second

of

audio

Comment

Get

or

update

user

comments

Content

Get

or

update

the

content

of

an

audio

ContentA

Update

the

content

of

an

audio

with

user-supplied

attributes

DB2Audio

Store

the

content

of

an

audio

DB2AudioA

Store

the

content

of

an

audio

with

user-supplied

attributes

Duration

Get

the

playing

time

of

an

audio

Filename

Get

the

name

of

the

file

that

contains

an

audio

FindInstrument

Get

the

number

of

the

audio

track

that

records

a

specific

instrument

in

an

audio

FindTrackName

Get

the

track

number

of

a

named

track

in

an

audio

recording

Format

Get

the

audio

format

GetInstruments

Get

the

names

of

the

instruments

recorded

in

an

audio

GetTrackNames

Get

the

track

names

in

an

audio

Importer

Get

the

user

ID

of

the

importer

of

an

audio

ImportTime

Get

the

timestamp

when

an

audio

was

imported

NumAudioTracks

Get

the

number

of

recorded

tracks

in

an

audio

NumChannels

Get

the

number

of

audio

channels

Replace

Update

the

content

and

user

comments

for

an

audio

recording

ReplaceA

Update

the

content

and

user

comments

for

an

audio

recording

with

user-supplied

attributes

SamplingRate

Get

the

sampling

rate

of

the

audio

Size

Get

the

size

of

an

audio

in

bytes

TicksPerQNote

Get

the

number

of

clock

ticks

per

quarter

note

used

in

recording

an

audio

TicksPerSec

Get

the

number

of

clock

ticks

per

second

used

in

recording

an

audio

Updater

Get

the

user

ID

of

the

updater

of

an

audio

UpdateTime

Get

the

timestamp

when

an

audio

was

updated

In

response

to

the

ENABLE

TABLE

command,

the

Audio

Extender:

v

Identifies

the

employee

table

for

use.

v

Creates

administrative

support

tables

that

hold

attribute

information

for

audio

objects

in

enabled

columns.

The

administrative

support

tables

are

stored

in

table

space

TBSPACE1.

v

Creates

an

auxiliary

LOB

table

to

hold

LOB

data

for

enabled

columns.

The

LOB

table

is

stored

in

the

LOB

table

space

that

is

named

LTBSPACE1.

v

Creates

indexes

for

the

administrative

support

tables

and

the

auxiliary

LOB

table.

v

Default

table

spaces

will

be

used

for

indexes

on

the

administrative

support

tables

table

space

and

the

LOB

data

table

space.

Altering

a

table

Chapter

3.

How

the

extenders

work

23

In

response

to

the

ENABLE

COLUMN

command,

the

Audio

Extender:

v

Identifies

the

voice

column

for

use.

v

Creates

triggers.

These

triggers

update

various

administrative

support

tables

in

response

to

insert,

update,

and

delete

operations

on

the

employee

table.

Inserting

data

into

a

table

A

user

inserts

a

record

for

Anita

Jones

into

the

employee

table.

The

record

includes

Anita’s

identification

(128557),

name,

picture,

and

voice

recording.

The

source

image

and

audio

content

are

in

files

on

the

server.

The

image

is

stored

in

the

table

as

a

BLOB;

the

content

of

the

audio

remains

in

the

server

file

(the

table

entry

refers

to

the

server

file).

What

the

user

does:

The

user

inserts

the

record

into

the

employee

table

by

using

an

application

program

that

includes

the

statements

that

are

shown

in

Figure

10.

What

happens

In

response

to

the

DB2Image

UDF

in

the

INSERT

statement,

the

Image

Extender:

v

Reads

the

attributes

of

the

image,

such

as

its

height,

width,

and

number

of

colors,

from

the

source

image

file

header.

v

Creates

a

unique

handle

for

the

image,

and

records

in

an

administrative

support

table:

–

The

handle

for

the

image

–

A

timestamp

–

The

image

size

in

bytes

–

The

comment

“Anita’s

picture”

–

The

content

of

the

image

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvInt_Stor;

long

hvExt_Stor;

EXEC

SQL

END

DECLARE

SECTION;

hvInt_Stor

=

MMDB_STORAGE_TYPE_INTERNAL;

hvExt_Stor

=

MMDB_STORAGE_TYPE_EXTERNAL;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

/*id*/

'Anita

Jones',

/*name*/

DB2IMAGE(

/*Image

Extender

UDF*/

CURRENT

SERVER,

/*database

server

name

in*/

/CURRENT

SERVER

register*/

'/employee/images/ajones.bmp'

/*image

source

file*/

'ASIS',

/*keep

the

image

format*/

:hvInt_Stor,

/*store

image

in

DB

as

BLOB*/

'Anita''s

picture'),

/*comment*/

DB2AUDIO(

/*Audio

Extender

UDF*/

CURRENT

SERVER,

/*database

server

name

in*/

/*CURRENT

SERVER

register*/

'/employee/sounds/ajones.wav',

/*audio

source

file*/

'WAVE',

/*

audio

format

*/

:hvExt_Stor,

/*retain

content

in

server

file*/

'Anita''s

voice')

/*comment*/

);

Figure

10.

Inserting

data

into

a

table

Altering

a

table

24

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

The

image

source

is

in

a

server

file

that

is

named

ajones.bmp.

The

content

of

the

file

is

inserted

into

the

administrative

support

table

record

as

a

BLOB.

The

format

of

the

stored

image

is

the

same

as

the

source

image;

no

format

conversion

is

done.

v

Stores

a

record

in

an

administrative

support

table.

The

record

contains

image-specific

attributes,

such

as

the

number

of

colors

in

the

image,

as

well

as

a

thumbnail-sized

version

of

the

image.

In

response

to

the

DB2Audio

UDF

in

the

INSERT

statement,

the

Audio

Extender:

v

Reads

the

attributes

of

the

audio,

such

as

the

number

of

audio

tracks

and

channels,

from

the

audio

file

header.

v

Creates

a

unique

handle

for

the

audio

v

Stores

a

record

in

an

administrative

support

table.

The

record

contains:

–

The

handle

for

the

audio

–

A

timestamp

–

The

audio

size

in

bytes

–

The

comment

“Anita’s

voice”

The

audio

content

is

in

a

server

file

that

is

named

ajones.wav;

the

administrative

support

table

record

refers

to

the

file.

v

Stores

a

record

in

another

administrative

support

table.

The

record

contains

audio-specific

attributes

such

as

the

sampling

rate

of

the

audio.

Triggers

insert

the

image

and

audio

attribute

data

into

various

administrative

support

tables.

Selecting

data

from

a

table

A

user

retrieves

information

about

how

recently

Robert

Smith’s

image

and

voice

recording

were

stored

in

the

employee

table.

What

the

user

does:

The

user

gets

the

information

by

using

an

application

program

that

includes

the

SQL

statements

that

are

shown

in

Figure

11.

What

happens:

In

response

to

the

ImportTime

UDF

for

the

PICTURE

column,

the

Image

Extender

returns

a

timestamp

that

contains

the

date

and

time

that

the

image

was

stored.

In

response

to

the

ImportTime

UDF

for

the

VOICE

column,

the

Audio

Extender

returns

a

timestamp

that

contains

the

date

and

time

that

the

voice

recording

was

stored.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char[255]

hvImg_Time;

char[255]

hvAud_Time;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

IMPORTTIME(PICTURE),

/*when

image

was

stored*/

IMPORTTIME(VOICE)

/*when

audio

was

stored*/

INTO

:hvImg_Time,

:hvAud_Time

FROM

EMPLOYEE

WHERE

NAME=’Robert

Smith’;

Figure

11.

Selecting

data

from

a

table

Inserting

data

Chapter

3.

How

the

extenders

work

25

Displaying

and

playing

objects

A

user

displays

Robert

Smith’s

image

and

plays

Robert

Smith’s

voice

recording

on

a

workstation

client

(multimedia

players

are

normally

run

on

workstation

clients).

The

image

is

stored

in

the

employee

table

as

a

BLOB;

the

content

for

the

voice

recording

is

in

a

server

file.

What

the

user

does:

The

user

displays

the

image

and

plays

the

voice

recording

by

using

an

application

program

that

includes

the

SQL

statements

that

are

shown

in

Figure

12.

What

happens:

DB2

retrieves

the

handle

of

Robert

Smith’s

image

and

voice

recording.

Then,

in

response

to

the

DBiBrowse

API,

the

Image

Extender

gets

the

image

content

associated

with

the

retrieved

image

handle.

The

Image

Extender

retrieves

the

image

content

from

the

database

and

puts

it

into

a

temporary

client

file

for

display

by

an

image

browser.

The

NULL

parameter

indicates

that

the

default

image

browser

for

the

user’s

system

will

be

used.

The

browser

will

run

independently

of

the

calling

program,

meaning

that

the

calling

program

will

not

wait

for

the

image

browser

to

finish

before

continuing.

In

response

to

the

DBaPlay

API,

the

Audio

Extender

gets

the

file

name

of

the

audio

associated

with

the

retrieved

audio

handle

and

passes

the

file

name

to

the

audio

player.

The

NULL

parameter

indicates

that

the

default

audio

player

for

the

user’s

system

will

be

used.

The

calling

program

will

wait

for

the

user

to

end

the

audio

player

before

continuing.

Updating

data

in

a

table

Anita

Jones

replaces

her

picture

in

the

employee

table

with

a

more

recent

picture.

The

content

of

the

newer

picture

is

in

a

server

file.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_hdl

[251];

char

hvAud_hdl

[251];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

PICTURE,

/*Get

image

handle*/

VOICE

/*Get

audio

handle*/

INTO

:hvImg_hdl,

:hvAud_hdl

FROM

EMPLOYEE

WHERE

NAME=’Robert

Smith’;

rc=DBiBrowse(

NULL,

/*Use

default

image

browser*/

MMDB_PLAY_HANDLE,

/*Use

handle*/

hvImg_hdl,

/*Image

handle*/

MMDB_PLAY_NO_WAIT);

/*Run

browser

independently*/

rc=DBaPlay(

NULL,

/*Use

default

audio

player*/

MMDB_PLAY_HANDLE,

/*Use

handle*/

hvAud_hdl,

/*Audio

handle*/

MMDB_PLAY_WAIT);

/*Wait

for

player

to

end*/

/*before

continuing*/

Figure

12.

Displaying

and

playing

objects

Displaying

and

playing

objects

26

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

What

the

user

does:

The

user

replaces

the

picture

in

the

employee

table

by

using

an

application

program

that

includes

the

SQL

statements

that

are

shown

in

Figure

13.

What

happens:

In

response

to

the

Replace

UDF

in

the

UPDATE

statement,

the

Image

Extender

reads

the

attributes

of

the

new

image.

The

Image

Extender

uses

the

attributes

of

the

new

image

to

update

the

attributes

stored

in

the

administrative

support

tables

for

the

old

image.

The

image

source

is

in

a

server

file

that

is

named

newone.bmp.

The

content

of

the

file

is

inserted

into

the

administrative

support

table

record

as

a

BLOB,

replacing

the

BLOB

content

of

the

old

image.

Deleting

data

from

a

table

A

user

deletes

Anita

Jones’s

record

from

the

employee

table.

What

the

user

does:

The

user

deletes

the

record

from

the

employee

table

by

using

an

application

program

that

includes

the

following

SQL

statement:

DELETE

FROM

EMPLOYEE

WHERE

NAME=’Anita

Jones’;

What

happens:

Triggers

delete

entries

for

Anita

Jones

in

various

administrative

support

tables.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvComment

[16385];

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

strcpy(hvComment,

"Picture

taken

at

Anita's

promotion");

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=REPLACE(

PICTURE,

/*image

handle*/

'/myimages/newone.bmp',

/*source

image

content*/

'BMP',

/*source

format*/

:hvStorageType,

/*store

image

in

table

as

BLOB*/

:hvComment)

/*replace

comment*/

WHERE

NAME='Anita

Jones';

Figure

13.

Updating

data

in

a

table

Updating

data

Chapter

3.

How

the

extenders

work

27

Deleting

data

28

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Part

2.

Administering

image,

audio,

and

video

data

Chapter

4.

Planning

for

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Workload

management

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

The

number

of

WLM

environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Performance

objectives

for

WLM

environments

.

.

.

.

.

.

.

.

.

.

.

. 32

Security

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Access

to

image,

audio,

and

video

objects

in

tables

.

.

.

.

.

.

.

.

.

. 32

Access

to

QBIC

catalog

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Access

to

content

in

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

EXECUTE

authority

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

The

MMDBSYS

user

ID

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Authority

to

administer

the

extenders

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Table

space

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Backup

and

recovery

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Chapter

5.

Administration

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Administration

tasks

you

can

perform

with

the

DB2

Extenders

.

.

.

.

.

.

. 37

Chapter

6.

Preparing

data

objects

for

extender

data

.

.

.

.

.

.

.

.

.

. 41

Enabling

database

servers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Specifying

table

space

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

Specifying

WLM

environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Specifying

external

security

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Enabling

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Enabling

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Disabling

data

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Chapter

7.

Tracking

data

objects

and

media

files

.

.

.

.

.

.

.

.

.

.

. 51

Checking

the

status

of

data

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Finding

table

entries

that

reference

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Finding

files

referenced

by

table

entries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Checking

if

media

files

exist

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Chapter

8.

Granting

and

revoking

privileges

on

administrative

support

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

©

Copyright

IBM

Corp.

1998,

2001

29

30

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

4.

Planning

for

DB2

Extenders

Before

you

use

the

DB2

Extenders,

you

need

to

make

some

basic

decisions

about

how

they

will

be

run.

In

particular,

you

need

to

make

decisions

about:

v

Workload

management

v

Security

v

Table

space

v

Backup

and

recovery

This

chapter

describes

considerations

for

making

these

decisions.

Workload

management

considerations

A

WLM

Application

Environment

is

a

set

of

parameters

describing

how

to

create

address

spaces

which

can

run

a

particular

kind

of

work.

The

extenders

use

WLM

Application

Environments

for

user-defined

functions

and

for

stored

procedures.

The

extenders

use

stored

procedures

to

process

API

requests.

After

the

DB2

Extenders

are

installed,

you

need

to

establish

WLM

environments

for

the

extender

UDFs

and

stored

procedures.

(See

Program

Directory

for

IBM

Database

2

Universal

Database

Server

for

OS/390

Version

6,

Volume

1

of

8

for

instructions

on

how

to

install

the

extenders.)

Each

WLM

environment

is

associated

with

a

JCL

procedure

that

starts

an

address

space

for

executing

the

DB2

extender

UDFs.

You

need

to

decide

how

many

WLM

environments

to

establish.

You

also

need

to

decide

what

performance

objectives

to

specify

for

these

environments.

The

number

of

WLM

environments

You

can

establish

multiple

WLM

environments

for

running

DB2

extender

UDFs.

When

you

enable

a

database

server

for

a

DB2

extender,

you

specify

the

WLM

environment

names

(see

“Specifying

WLM

environments”

on

page

42).

You

are

allowed

to

specify

up

to

two

WLM

environment

names

.

If

you

specify

one

WLM

environment

name,

then

all

of

the

extender’s

UDFs

run

in

that

WLM

environment.

If

you

specify

two

WLM

environment

names,

the

second

WLM

environment

is

used

to

run:

v

UDFs

that

store,

retrieve,

or

update

objects

(such

as

the

DB2Image,

Content,

and

Replace

UDFs)

v

Stored

procedures

for

QBIC

APIs

The

first

WLM

environment

is

used

for:

v

Attribute

retrieval

UDFs

(such

as

the

Width,

Height,

and

Size

UDFs)

v

UDFs

that

require

longer

processing

times

or

that

have

higher

expected

memory

requirements

v

Stored

procedures

for

administrative

APIs

Specify

one

WLM

environment:

Unless

you

expect

high

DB2

extender

workloads,

you

should

specify

one

WLM

environment

when

you

enable

a

database

server.

In

high

workload

situations,

running

extender

UDFs

in

multiple

WLM

environments

can

improve

performance.

However

there

is

extra

overhead

in

maintaining

the

multiple

address

spaces

associated

with

two

WLM

environments.

©

Copyright

IBM

Corp.

1998,

2001

31

Performance

objectives

for

WLM

environments

WLM

can

operate

in

either

of

two

modes:

compatibility

mode

or

goal

mode.

In

compatibility

mode,

work

requests

are

given

a

service

class

by

the

classification

rules

in

the

active

WLM

service

policy.

In

goal

mode,

work

requests

are

also

assigned

a

service

class

by

the

classification

rules

in

the

active

WLM

service

policy.

However

each

service

class

period

has

a

performance

objective,

that

is,

a

goal.

WLM

raises

or

lowers

that

period’s

access

to

system

resources

as

needed

to

meet

the

specified

goal.

For

example,

the

goal

might

be

“application

APPL8

should

run

in

less

than

3

seconds

of

elapsed

time

90%

of

the

time”.

Specify

goal

mode:

In

goal

mode,

WLM

automatically

starts

WLM-established

address

spaces

for

user-defined

functions

to

help

meet

the

service

class

goals

that

you

set.

By

comparison,

in

compatibility

mode,

WLM

cannot

automatically

start

a

new

address

space

to

handle

high-priority

requests.

Instead,

you

must

monitor

the

performance

of

UDFs

to

determine

how

many

WLM-managed

address

spaces

to

start

manually.

As

a

result,

goal

mode

is

recommended

for

running

DB2

extender

UDFs.

Security

considerations

Before

you

use

the

DB2

Extenders,

you

need

to

consider

the

implications

the

extenders

have

on

security.

For

example,

you

need

to

determine

what

controls

(if

any)

to

put

in

place

for

access

to

image,

audio,

and

video

object

content

and

metadata.

You

also

need

to

determine

whether

you

want

to

restrict

privileges

that

the

DB2

Extenders

automatically

grant

to

users.

Access

to

image,

audio,

and

video

objects

in

tables

Image,

audio,

and

video

objects

stored

as

BLOBs

in

a

DB2

database

are

afforded

the

same

security

protection

as

traditional

numeric

and

character

data.

Users

must

have

the

required

privilege

to

select

objects

from,

insert

objects

into,

update

objects

in,

or

delete

objects

from

a

DB2

database.

For

example,

to

select

objects

from

a

user

table,

a

user

must

have

SELECT

privilege

on

the

table.

For

information

about

DB2

security,

see

the

DB2

Administration

Guide.

Users

issue

UDFs

to

select,

insert,

update,

or

delete

objects

from

a

user

table.

To

perform

the

requested

operations,

the

UDFs

must

be

able

to

access,

and

if

necessary

update,

the

administrative

support

tables

that

hold

attribute

information

for

the

objects.

For

the

owner

of

a

user

table,

the

extenders

automatically

give

the

UDFs

the

access

they

need

to

handle

the

requested

operation.

However

users

other

than

the

table

owner

who

need

to

select

an

object

from

the

user

table

must

be

granted

SELECT

privilege

on

the

administrative

support

tables.

The

extenders

provide

a

GRANT

command

to

grant

privileges

on

the

administrative

support

tables.

The

extenders

also

provide

a

REVOKE

command

to

revoke

privileges

granted

on

administrative

support

tables.

For

further

information

about

granting

and

revoking

privileges

on

administrative

support

tables,

see

Chapter

8,

“Granting

and

revoking

privileges

on

administrative

support

tables,”

on

page

55.

For

insert,

update,

or

delete

operations,

the

extenders

check

to

determine

if

the

user

has

the

needed

INSERT,

UPDATE,

or

DELETE

privilege

on

the

user

table.

If

the

user

has

the

required

privilege,

the

extenders

allow

the

UDFs

to

access

the

administrative

support

tables,

as

required.

Workload

management

considerations

32

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Access

to

QBIC

catalog

tables

Users

who

perform

QBIC

operations

on

image

objects

require

appropriate

privileges

on

the

administrative

support

tables

that

comprise

the

QBIC

catalog

for

those

objects.

For

example,

a

user

who

issues

a

QBIC

query

against

a

column

of

images

must

have

SELECT

privilege

on

the

QBIC

catalog

tables

for

the

image

column.

A

user

who

makes

changes

to

the

QBIC

catalog

should

have

SELECT,

INSERT,

UPDATE,

and

DELETE

privilege

on

the

associated

QBIC

catalog

tables.

Other

than

the

owner

of

the

QBIC

catalog

(that

is,

the

owner

of

the

user

table

for

which

the

catalog

is

specified),

a

user

must

be

granted

the

appropriate

privileges

on

the

QBIC

catalog

tables.

The

extenders

provide

a

GRANT

command

to

grant

privileges

on

the

QBIC

catalog

tables.

The

extenders

also

provide

a

REVOKE

command

to

revoke

privileges

on

the

QBIC

catalog

tables.

For

further

information

about

granting

and

revoking

privileges

on

QBIC

catalog

tables,

see

Chapter

8,

“Granting

and

revoking

privileges

on

administrative

support

tables,”

on

page

55.

Grant

privileges

on

a

QBIC

catalog

after

all

features

are

added:

Privileges

granted

on

a

QBIC

catalog

include

privileges

on

QBIC

feature

tables,

but

only

for

features

that

have

been

already

been

added

to

the

catalog.

If

you

add

a

feature

to

the

catalog

after

you

grant

privileges

on

the

catalog,

you

will

have

to

grant

privileges

on

the

catalog

again.

So

you

should

grant

privileges

on

a

QBIC

catalog

only

after

the

catalog

is

created

and

after

all

the

features

have

been

added.

Access

to

content

in

files

The

image,

audio,

and

video

objects

that

you

store

in

a

table

can

point

to

content

stored

in

files.

The

files

must

be

in

a

file

system

that

is

compatible

with

z/OS

UNIX

services,

for

example,

a

hierarchical

file

system

(HFS).

When

an

administrator

enables

a

database

server

for

an

extender,

the

administrator

can

specify

an

EXTERNAL

SECURITY

option

(see

“Specifying

external

security”

on

page

42).

The

option

indicates

how

UDFs

that

store,

retrieve,

and

update

objects

interact

with

an

external

security

product

such

as

RACF®

to

control

access

to

files.

The

administrator

can

specify

EXTERNAL

SECURITY

USER

or

EXTERNAL

SECURITY

DB2.

If

EXTERNAL

SECURITY

USER

is

specified,

the

DB2

extender

UDFs

run

with

the

primary

authorization

ID

of

the

process

that

called

them.

In

addition,

the

UDFs

also

have

permissions

as

defined

for

them

on

the

DB2

server.

The

primary

authorization

ID

of

the

process

is

used

rather

than

other

DB2

authorization

IDs,

such

as

the

authorization

ID

of

the

package

or

plan

owner.

The

primary

authorization

ID

is

subject

to

distributed

database

security

operations

such

as

inbound

authorization

ID

translation.

If

EXTERNAL

SECURITY

DB2

is

specified,

the

DB2

extender

UDFs

access

files

using

the

authorization

ID

associated

with

the

WLM

environment

address

spaces

that

are

established

for

running

the

UDFs.

In

this

case,

all

extender

users

have

access

to

the

same

files.

When

a

UDF

attempts

to

access

a

file,

z/OS

Open

Edition

Services

calls

an

external

security

product

such

as

Security

Server

(RACF)

to

get

the

user

ID

(UID)

and

group

ID

(GID)

associated

with

the

UDF.

For

EXTERNAL

SECURITY

USER,

the

UID

and

GID

are

those

that

are

assigned

to

the

authorization

ID

in

effect

for

the

process

that

calls

the

UDF.

For

EXTERNAL

SECURITY

DB2,

the

UID

and

GID

are

those

that

are

assigned

to

the

authorization

ID

of

the

WLM

application

environment

address

spaces

for

the

UDF.

The

system

then

compares

the

UID

and

GID

Security

considerations

Chapter

4.

Planning

for

DB2

Extenders

33

assignments

to

the

user,

group,

and

other

permission

bits

in

the

file’s

directory

entry.

The

file

can

be

accessed

only

if

the

user’s

UID

and

GID

are

compatible

with

the

permissions

in

the

file’s

directory

entry.

EXTERNAL

SECURITY

USER

gives

greater

control

over

file

access:

If

you

specify

EXTERNAL

SECURITY

USER,

filesystem

checks

are

made

against

the

primary

authorization

ID

of

the

process

that

calls

the

UDF.

Because

you

can

assign

different

UIDs

and

GIDs

to

different

users,

you

can

control

access

to

files

on

a

user-by-user

basis.

By

comparison,

EXTERNAL

SECURITY

DB2

gives

you

one

level

of

control

because

all

UDFs

run

with

the

same

UID

and

GID,

that

is,

the

UID

and

GID

assigned

to

the

WLM

environment

address

spaces.

For

this

reason,

EXTERNAL

SECURITY

DB2

is

a

good

choice

for

applications

where

file

read

protection

is

not

required,

for

example

Web

applications.

EXTERNAL

SECURITY

DB2

requires

less

administration:

If

you

specify

EXTERNAL

SECURITY

DB2,

you

need

to

assign

an

authorization

ID,

UID,

and

GID

to

the

WLM

address

spaces

for

the

extender

UDFs.

By

comparison,

if

you

specify

EXTERNAL

SECURITY

USER,

you

must

assign

a

UID

and

GID

for

every

legitimate

user

of

the

files.

In

both

cases,

you

need

to

coordinate

the

UID

and

GID

assignments

with

the

filesystem

permissions.

EXTERNAL

SECURITY

DB2

results

in

better

UDF

performance:

This

is

because

the

individual

nature

of

performing

the

security

checks

for

EXTERNAL

SECURITY

USER

incurs

more

overhead

in

the

database

server

than

EXTERNAL

SECURITY

DB2.

EXECUTE

authority

When

a

database

server

is

enabled

for

a

DB2

extender,

use

privilege

on

the

extender’s

UDT

(and

related

CAST

functions)

and

use

privilege

on

all

of

its

UDFs

are

granted

to

PUBLIC.

You

can

revoke

the

use

privilege

on

the

UDT

and

UDFs

that

was

granted

to

PUBLIC,

and

grant

the

privilege

to

use

the

UDT

and

UDFs

to

specific

authorization

IDs.

This

does

not

affect

the

way

the

extender

operates.

However

maintaining

authority

lists

could

become

tedious.

Because

of

this,

consider

controlling

access

to

files

that

are

used

(or

potentially

used)

by

DB2

extender

UDFs,

as

described

in

“Access

to

content

in

files”

on

page

33.

In

effect,

this

limits

the

ability

to

successfully

retrieve

objects

of

the

associated

user-defined

type

to

specific

authorization

IDs.

This

has

implications

for

external

security:

If

you

specify

EXTERNAL

SECURITY

DB2,

UDF

access

to

files

is

controlled

by

authorization

ID,

UID,

and

GID

specifications

made

for

the

WLM

environment

address

spaces

in

which

the

UDFs

run.

However

because

EXECUTE

authority

on

DB2

extender

UDFs

is

automatically

granted

to

PUBLIC,

it

means

that

anyone

with

INSERT

or

UPDATE

privilege

on

an

enabled

table

might

have

significant

access

to

the

HFS

file

system.

So

assign

the

authorization

ID,

UID,

GID

and

file

system

permissions

for

these

address

spaces

with

care.

It

is

important

to

restrict

the

file

access

for

these

address

spaces

to

the

minimum

level

required,

based

on

your

needs.

The

MMDBSYS

user

ID

The

DB2

Extenders

use

an

SQL

ID

of

MMDBSYS.

As

a

result,

you

should

create

an

MMDBSYS

user

ID

to

manage

DB2

extender

objects

such

as

administrative

support

tables.

Use

an

appropriate

external

security

system

such

as

RACF

to

create

the

MMDBSYS

user

ID.

If

secondary

authorization

IDs

are

used

by

DB2,

you

should

take

steps

to

secure

MMDBSYS

as

a

secondary

ID.

Security

considerations

34

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Authority

to

administer

the

extenders

Some

extender-related

administrative

operations

require

special

authority.

See

Chapter

14,

“Application

programming

interfaces,”

on

page

219

for

the

authority

required

by

DB2

extender

administrative

APIs.

See

Chapter

15,

“Administration

commands

for

the

client,”

on

page

357

for

the

authority

required

by

DB2

extender

administrative

commands.

Table

space

considerations

The

DB2

Extenders

store

attribute

data

and

LOBs

in

administrative

support

tables

that

are

contained

in

DB2

table

spaces.

When

you

enable

a

database

server

for

an

extender,

you

can

specify

a

table

space

for

the

“global”

administrative

support

tables

for

the

database

server

(see

“Specifying

table

space”

on

page

41).

These

administrative

support

tables

store

information

such

as

the

names

of

extenders

for

which

the

database

server

is

enabled.

The

table

space

that

you

specify

for

the

global

administrative

support

tables,

should

be

in

the

MMDBSYS

database.

The

MMDBSYS

database

is

created

as

part

of

the

setup

done

after

the

DB2

Extenders

are

installed.

(See

IBM

Database

2

Universal

Database

Server

for

OS/390

Version

6,

Volume

1

of

8

for

further

information.)

When

you

enable

a

table

for

an

extender,

you

must

specify

a

table

space

for

the

attribute

data,

and

a

table

space

for

LOBs

stored

in

extender-enabled

columns.

The

table

space

should

be

a

segmented

table

space.

Specify

LOCKSIZE

ROW

when

you

create

the

table

space

if

you

expect

any

of

the

following

actions

to

occur

frequently,

occur

in

complex

transactions,

or

occur

in

units

of

work

that

are

not

immediately

committed:

v

Enable

or

disable

operations

v

Requests

to

create

a

QBIC

catalog

v

Requests

to

add

a

feature

to

a

QBIC

catalog

Specify

a

table

space

for

the

global

administrative

support

tables:

If

you

do

not

specify

a

table

space,

DB2

creates

a

table

space

for

each

global

administrative

support

table.

It

is

probably

more

efficient

to

specify

a

single,

segmented

table

space

for

the

global

administrative

support

tables.

Specify

table

spaces

in

the

same

database

as

the

user

table:

The

table

spaces

that

you

specify

when

you

enable

a

table

for

an

extender

should

be

in

the

same

database

as

the

table.

One

advantage

of

doing

this

is

that

objects

and

their

metadata

can

be

managed

together.

Backup

and

recovery

considerations

You

need

to

back

up

the

MMDBSYS

database.

The

database

is

created

as

part

of

DB2

Extenders

initialization.

(For

further

information

about

DB2

Extenders

initialization

see

Program

Directory

for

IBM

Database

2

Universal

Databse

Server

for

OS/390

Volume

1

of

8.)

The

database

contains

the

global

metadata

tables

that

keep

track

of

which

extenders

are

enabled

on

the

database

server,

and

which

tables

and

columns

are

enabled

for

the

extenders.

The

database

also

contains

a

list

of

the

QBIC

catalogs.

You

should

back

up

the

database

after

significant

events

occur

related

to

enablement

and

QBIC

catalogs.

For

example,

back

up

the

database

after

you

enable

a

database

server,

create

a

QBIC

catalog,

or

add

a

feature

to

a

QBIC

catalog.

Security

considerations

Chapter

4.

Planning

for

DB2

Extenders

35

BLOBs

and

metadata

can

be

backed

up

and

recovered

in

the

same

way

as

other

data

in

DB2.

Object

contents

stored

in

a

file

can

be

backed

up

and

recovered

using

non-DB2

tools.

Backup

and

recovery

considerations

36

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

5.

Administration

overview

This

chapter

provides

an

overview

of

the

administration

tasks

involved

when

you

create

applications

that

use

the

DB2

Extenders.

The

DB2

Extenders

offer

two

ways

to

perform

most

administration

tasks:

v

Administration

application

programming

interfaces

(APIs).

You

can

include

the

DB2

extender

APIs

in

your

C

language

program.

See

Chapter

14,

“Application

programming

interfaces,”

on

page

219

for

reference

information

on

these

APIs.

v

Administration

commands.

You

can

submit

administration

commands

to

the

db2ext

command-line

processor.

See

Chapter

15,

“Administration

commands

for

the

client,”

on

page

357

for

instructions

on

entering

administration

commands

and

for

additional

reference

information.

Administration

tasks

you

can

perform

with

the

DB2

Extenders

There

are

three

categories

of

administrative

tasks:

v

Preparing

data

objects

for

extender

data.

You

prepare

database

servers,

tables,

and

columns

to

hold

extender

data

by

enabling

them.

When

you

enable

a

data

object,

the

extenders

create

and

maintain

administrative

support

tables

(also

called

metadata

tables)

to

manage

the

extender

data.

v

Tracking

data

objects

and

media

files.

As

you

debug

applications

that

use

the

DB2

Extenders,

it

is

useful

to

know

which

data

objects

are

enabled

for

extender

data.

It

is

also

useful

to

understand

the

correlation

between

user

tables

and

external

media

files.

v

Granting

and

revoking

authority

on

administrative

support

tables.

To

select

an

object

from

a

table,

a

user

needs

to

be

granted

SELECT

privilege

on

the

administrative

support

tables

that

hold

attribute

information

for

the

object.

If

access

to

objects

in

a

table

is

no

longer

appropriate

for

a

specific

user,

you

can

revoke

the

user’s

SELECT

privilege

and

other

privileges

that

the

user

has

on

the

administrative

support

tables.

Table

5

on

page

38

lists

all

the

tasks

involved

in

administering

extender

data.

The

table

specifies

which

tools

are

provided

to

perform

each

task,

and

where

to

find

more

information.

In

the

Extender

API

column,

x

represents

the

third

character

of

each

API

statement.

This

character

varies

according

to

the

extender

you

are

using:

Table

4.

Character

with

respective

extender

Character

Extender

a

Audio

i

Image

v

Video

For

example,

the

API

for

enabling

a

table

for

image

data

is

DBiEnableTable,

the

API

for

enabling

a

table

for

audio

is

DBaEnableTable,

and

the

API

for

enabling

a

table

for

video

is

DBvEnableTable.

A

value

of

No

in

the

Extender

API

column

means

that

there

is

no

extender

API

for

the

task.

A

value

of

No

in

the

Extender

Command

column

means

that

there

is

no

extender

command

for

the

task.

©

Copyright

IBM

Corp.

1998,

2001

37

QBIC

requires

additional

administration:

If

you

plan

to

use

the

Image

Extender’s

Query

by

Image

Content

(QBIC)

capability,

you

need

to

perform

additional

administrative

tasks,

such

as

creating

a

QBIC

catalog.

For

information

about

these

tasks,

see

Chapter

12,

“Querying

images

by

content,”

on

page

107.

Table

5.

Administration

tasks

and

facilities

for

the

DB2

Extenders

Task

Extender

API

Extender

Command

See

Preparing

data

objects

for

multimedia

data

Enable

a

database

server

DBxEnableServer

ENABLE

SERVER

p.

41

Disable

a

database

server

DBxDisableServer

DISABLE

SERVER

p.

49

Enable

a

table

DBxEnableTable

ENABLE

TABLE

p.

45

Disable

a

table

DBxDisableTable

DISABLE

TABLE

p.

49

Enable

a

column

DBxEnableColumn

ENABLE

COLUMN

p.

48

Disable

a

column

DBxDisableColumn

DISABLE

COLUMN

p.

49

Tracking

data

objects

and

media

files

Find

out

if

database

servers

are

enabled

DBxIsServerEnabled

GET

EXTENDER

STATUS

p.

51

Find

out

if

tables

are

enabled

DBxIsTableEnabled

GET

EXTENDER

STATUS

p.

51

Find

out

if

columns

are

enabled

DBxIsColumnEnabled

GET

EXTENDER

STATUS

p.

51

Find

table

entries

that

reference

files

in

tables

whose

qualifier

is

the

current

user

ID

DBxIsFileReferenced

No

p.

52

Find

table

entries

that

reference

files

in

all

tables

of

a

specific

qualifier

or

all

tables

in

a

database

DBxAdminIsFileReferenced

No

p.

52

Find

files

referenced

by

table

entries

in

tables

whose

qualifier

is

the

current

user

ID

DBxGetReferencedFiles

GET

REFERENCED

FILES

p.

53

Find

files

referenced

by

table

entries

in

all

tables

of

a

specific

qualifier

or

all

tables

in

a

database

DBxAdminGetReferencedFiles

GET

REFERENCED

FILES

p.

53

Find

inaccessible

files

referenced

by

table

entries

in

all

tables

whose

qualifier

is

the

current

user

ID

DBxGetInaccessibleFiles

GET

INACCESSIBLE

FILES

p.

54

Find

inaccessible

files

referenced

by

table

entries

in

all

tables

of

a

specific

qualifier

or

all

tables

in

a

database

DBxAdminGetInaccessibleFiles

GET

INACCESSIBLE

FILES

p.

54

Granting

and

revoking

privileges

on

administrative

support

(metadata)

tables

Grant

privileges

on

administrative

support

tables

No

GRANT

p.

55

Revoke

privileges

on

administrative

support

tables

No

REVOKE

p.

55

Sequence

of

administration

tasks:

The

following

list

is

an

ordered

summary

of

the

administration

tasks

you

perform

when

you

use

the

extenders

the

first

time.

You

Administration

overview

38

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

use

DB2

commands

or

statements

to

perform

some

tasks.

You

perform

other

tasks

with

the

DB2

Extenders.

This

sequence

assumes

that

your

DB2

system

is

running.

Required

tasks:

1.

Connect

to

the

database

server.

2.

Enable

the

database

server.

3.

Create

a

table

and

column

(by

using

DB2).

4.

Enable

a

table

in

the

database.

5.

Enable

a

column

in

the

table.

Optional

tasks:

1.

Track

data

objects

and

media

files.

2.

Set

the

current

path

(using

DB2).

3.

Grant

or

revoke

privileges

on

administrative

support

tables

Examples:

Most

of

the

examples

in

the

next

three

chapters

assume

that

a

system

administrator

(SYSADM)

or

a

database

administrator

(DBA)

is

performing

the

tasks.

A

few

tasks

do

not

require

DBA

or

SYSADM

authority.

The

examples

assume

that

the

DBA

has

added

the

MMDBSYS

schema

in

the

current

path.

This

allows

the

DBA

to

specify

UDT

names

without

prefixing

them

with

the

MMDBSYS

schema

name.

For

more

information

about

UDT

names,

see

“UDF

and

UDT

names”

on

page

13.

Many

of

the

API

examples

in

this

section

are

based

on

the

sample

application

code

that

is

supplied

with

extenders.

The

sample

code

is

in

the

SAMPLES

subdirectory

on

the

client.

Administration

overview

Chapter

5.

Administration

overview

39

Administration

overview

40

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

6.

Preparing

data

objects

for

extender

data

You

prepare

database

servers,

tables,

and

columns

to

hold

extender

data

by

enabling

them.

First

enable

the

database

server.

Then

enable

a

table

in

the

database

server.

Finally,

enable

a

column

in

the

table.

When

you

no

longer

want

extender

data

in

your

data

objects,

you

can

disable

the

objects.

You

can

enable

and

disable

objects

either

using

the

APIs

in

your

C

language

program

or

from

the

db2ext

command

line.

In

this

chapter,

examples

are

provided

for

each

method.

Enabling

database

servers

Use

the

DBxEnableServer

API

(where

x

is

a

for

audio,

i

for

image,

or

v

for

video)

or

the

ENABLE

SERVER

command

to

enable

a

database

server

for

a

DB2

extender.

When

you

enable

a

database

server,

the

extender:

v

Creates

a

user-defined

type

(UDT)

named

DB2xxxxx

for

your

data

objects,

where

xxxxx

is

either

Image,

Audio,

or

Video.

The

UDT

is

used

to

define

a

column

in

the

user

table

that

holds

handles

for

objects

of

that

type.

v

Creates

administrative

support

tables

(also

called

metadata

tables)

for

the

database

server.

These

tables

are

not

user

tables

(tables

in

which

users

store

business

data).

The

extenders

use

them

to

manage

extender

data.

Do

not

edit

them

manually.

v

Creates

the

user-defined

functions

(UDFs)

associated

with

the

extender.

The

UDFs

are

listed

in

“User-defined

functions”

on

page

147.

When

you

issue

the

DBxEnableServer

API

or

ENABLE

SERVER

command,

you:

v

Should

specify

a

table

space

to

hold

“global”

administrative

support

tables

for

the

database

server.

These

administrative

support

tables

store

information

such

as

for

which

extenders

the

database

server

is

enabled.

If

you

enable

a

database

server

for

the

Image

Extender,

one

of

the

global

administrative

support

tables

records

the

association

between

user

table

columns

and

QBIC

catalogs.

v

Must

specify

an

MVS

Workload

Manager

(WLM)

environment

name

(you

can

specify

two).

UDFs

for

the

extender

run

in

these

WLM

environments.

v

Can

specify

external

security.

This

indicates

how

the

UDFs

interact

with

an

external

security

product,

such

as

IBM

Resource

Access

Control

Facility

(RACF)

and

the

file

system,

to

control

access

to

files.

UDFs

that

use

files

include

UDFs

that

store,

retrieve,

and

update

objects,

such

as

DB2Image

and

Content,

they

do

not

include

attribute

retrieval

UDFs

such

as

Format.

You

need

SYSADM

authority,

a

user

ID

of

MMDBSYS,

or

a

user

ID

with

a

secondary

authorization

ID

of

MMDBSYS

to

enable

a

database

server.

Specifying

table

space

The

table

space

specification

has

two

parts.

The

first

part

is

the

table

space

name.

The

name

must

be

the

name

of

a

table

space

that

is

defined

in

the

MMDBSYS

database.

(The

MMDBSYS

database

is

created

as

part

of

the

setup

that

is

done

after

the

DB2

Extenders

are

installed.)

For

further

information

about

DB2

extender

©

Copyright

IBM

Corp.

1998,

2001

41

installation

and

setup

procedures,

see

the

Program

Directory.)

If

you

do

not

specify

a

table

space

name,

DB2

creates

a

table

space

in

the

MMDBSYS

database

for

each

global

administrative

support

table.

The

second

part

of

the

table

space

specification

identifies

any

combination

of

using-block,

free

block,

gbpcache-block,

and

index

options

for

type

2

non-partitioned

indexes.

You

get

defaults

if

you

do

not

provide

the

second

part

of

the

table

space

specification.

For

details

about

these

blocks

and

index

options,

see

the

description

of

the

CREATE

INDEX

command

in

the

SQL

Reference.

Specifying

WLM

environments

You

can

specify

up

to

two

WLM

environment

names.

(WLM

environments

for

the

DB2

Extenders

are

established

as

part

of

the

setup

that

is

done

after

the

DB2

Extenders

are

installed.)

If

only

one

WLM

environment

name

is

specified,

then

all

extender

UDFs

run

in

that

WLM

environment.

If

two

WLM

environments

are

specified,

the

second

is

used

to

execute

UDFs

that

store,

retrieve,

or

update

objects

(such

as

DB2Image,

Content,

and

Replace).

The

first

WLM

environment

is

used

for

attribute

retrieval

UDFs

(such

as

Width,

Height,

and

Size).

See

“Workload

management

considerations”

on

page

31

for

additional

considerations

in

specifying

WLM

environments.

Specifying

external

security

You

can

specify

EXTERNAL

SECURITY

USER

or

EXTERNAL

SECURITY

DB2.

If

you

specify

EXTERNAL

SECURITY

USER,

each

UDF

runs

as

if

has

the

user

ID

(that

is,

the

primary

authorization

ID)

of

the

process

that

invoked

it.

Each

UDF

has

permissions

as

defined

for

that

user

ID

on

the

OS/390

server.

If

you

specify

EXTERNAL

SECURITY

DB2,

UDF

access

to

files

is

performed

using

the

primary

authorization

ID

of

the

DB2

Extenders.

In

this

case,

any

files

that

UDFs

can

access

using

the

extender

authorization

ID

can

also

be

accessed

by

the

process

that

starts

the

UDF.

EXTERNAL

SECURITY

DB2

is

the

default.

See

“Security

considerations”

on

page

32

for

additional

considerations

in

specifying

external

security.

Examples

In

the

following

examples,

a

database

server

is

enabled

to

hold

image

data.

Using

the

API:

The

code

in

Figure

14

on

page

43

connects

to

an

existing

database

server

before

enabling

it.

This

example

is

written

using

the

DB2

call

level

interface.

It

includes

some

set-up

and

error-checking

code.

The

complete

sample

program

is

in

the

ENABLE

member

of

the

SAMPLES

partitioned

data

set,

and

in

ENABLE.C

file

in

the

SAMPLES

Open

Edition

subdirectory.

Enabling

database

servers

42

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

/*----

Set-up

---*/

#include

<stdio.h>

#include

<stlib.h>

#include

<string.h>

#include

"dmbimage.h"

/*

image

extender

function

prototypes

(DBi)

*/

#include

"utility.h"

/*

utility

functions

*/

#define

MMDB_ERROR_MSG_TEXT_LEN

1000

#define

SERVER_IS_DB2390

(strcmp(dbms,"DB2")==0

||

strcmp(dmbs,"DSN06010")==0)

int

main(int

argc,

char

*argv[])

{

SQLHENV

henv

=

SQL_NULL_HENV;

SQLHDBC

hdbc

=

SQL_NULL_HDBC;

SQLHSTMT

hstmt

=

SQL_NULL_HSTMT;

SQLCHAR

uid[18+1];

SQLCHAR

pwd[30+1];

SQLCHAR

dbname[SQL_MAX_DSN_LENGTH+1];

SQLCHAR

buffer[500];

SQL

SMALLINT

dbms_sz

=

0;

char

dbms[20];

SQLRETURN

rc

=

SQL_SUCCESS;

SQLINTEGER

sqlcode

=

0;

char

errorMsgText[MMDB_ERROR_MSG_TEXT_LEN+1];

char

*program

=

"enable;

char

tableSpace[8+1]="MMDBSYSG";

/*

define

global

meta

tablespace

*/

char

wlm[8+1]="WLMENV1"

/*

define

wlm

environment

*/

char

security[8+1]="DB2";

/*

define

external

security

*/

Figure

14.

Sample

code

that

enables

a

database

server

(Part

1

of

3)

Enabling

database

servers

Chapter

6.

Preparing

data

objects

for

extender

data

43

/*---

Prompt

for

subsystem

location

name,

wlm

environment

name,

userid,

--*/

/*---

and

password

---*/

if

(argc

>

5)

||

(argc

>=2

&&

strcmp(argv[1],"?")==

0))

{

printf("Syntax

for

enable

-

enabling

a

DB2

for

OS/390

server:

\n"

"

enable

location_name

wlm_environment

userid

password\n");

exit(0);

}

if

(argc

==

5)

{

strcpy((char

*)dbname,

argv[1]);

strcpy((char

*)wlm

,

argv[2]);

strcpy((char

*)uid

,

argv[3]);

strcpy((char

*)pwd

,

argv[4]);

}

else

{

printf("Enter

DB2

location

name:\n");

gets((char

*)

dbname);

printf("Enter

userid:\n");

gets((char

*)

uid);

printf("Enter

password:\n");

gets((char

*)

pwd);

}

/*---

connect

to

DB2

for

OS/390

server

--*/

rc

=

cliInitialize(&henv,

&hdbc,

dbname,

uid,

pwd);

cliCheckError(henv,

hdbc,

SQL_NULL_HSTMT,

rc);

if

(rc

<

0)

goto

SERROR;

/*---

find

out

if

application

is

connected

to

DB2/OS390?

----------------------*/

rc

=

SQLGetInfo(hdbc,

SQL_DBMS_NAME,

(SQLPOINTER)

&dbms,

sizeof(dbms),

&dbms_sz);

cliCheckError(henv,

hdbc,

SQL_NULL_HSTMT,

rc);

if

(rc

<

0)

goto

SERROR;

Figure

14.

Sample

code

that

enables

a

database

server

(Part

2

of

3)

Enabling

database

servers

44

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Using

the

db2ext

command

line:

enable

server

for

db2image

using

mmdbsysg

wlm

environment

wlmenv1

external

security

db2

Enabling

tables

Use

the

DBxEnableTable

API

(where

x

is

a

for

audio,

i

for

image,

or

v

for

video)

or

the

ENABLE

TABLE

command

to

enable

a

table

for

a

DB2

extender.

When

you

issue

the

API

or

command,

you

specify

table

spaces

to

hold

administrative

support

tables

and

LOB

data

for

image,

audio,

and

video

objects.

You

also

specify

the

name

of

the

user

table.

The

table

space

specification

has

four

parts:

v

The

name

of

the

table

space

for

the

administrative

support

tables.

You

must

specify

this

table

space.

v

For

the

incex

created

on

the

administrative

support

tables,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

and

index

options

for

type

2

non-partitioned

indexes.

You

get

defaults

if

you

do

not

specify

this

part

of

the

table

space

specification.

v

The

name

of

the

table

space

for

LOB

data.

You

must

specify

this

table

space.

v

For

the

index

created

on

the

LOB

table,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

and

index

options

for

type

2

non-partitioned

indexes.

You

get

defaults

if

you

do

not

specify

this

part

of

the

table

space

specification.

/******

enable

server

for

image

extender

***************************************/

if

(SERVER_IS_DB2390)

{

printf("Enter

WLM

Environment

Name:\n");

gets((char

*)

wlm);

/*

check

later

*/

printf("%s:

Enabling

server......\n",

program);

}

printf("%s:

This

may

take

a

few

minutes,

please

wait......\n",

program);

if

(SERVER_IS_DB2390)

{

printf("Enable

server

for

db2image

using

%s

wlm

environment

%s"

"

external

security

%s\n",

program,

tableSpace,

wlm,

security);

rc

=

DBiEnableServer(tableSpace,

wlm,

security);

step="DBiEnableServer"

}

if

(rc

<

0)

{

printf("%s:

%s

failed!\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

if

(sqlcode)

printf("sqlcode=%i,

",sqlcode);

printf("errorMsgText=%s\n",

errorMsgText);

}else

if

(rc

>

0)

{

printf("%s:

%s,

warning

detected.\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

printf("warning

MsgText=%s\n",

errorMsgText);

}

else

printf("%s:

%s

OK\n",

program,

step);

/******

end

of

enable

server

***/

Figure

14.

Sample

code

that

enables

a

database

server

(Part

3

of

3)

Enabling

database

servers

Chapter

6.

Preparing

data

objects

for

extender

data

45

For

details

about

the

blocks

and

options

for

indexes,

see

the

description

of

the

CREATE

INDEX

command

in

the

SQL

Reference.

It

is

recommended

that

you

specify

table

spaces

that

are

in

the

same

database

as

the

user

table.

To

enable

a

table,

you

need

either:

v

SYSADM

authority

v

DBADM

authority

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

A

user

ID

of

MMDBSYS

with

a

secondary

authorization

ID

of

MMDBSYS;

the

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table.

The

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

In

the

following

examples,

a

table

is

enabled

to

hold

image

data.

The

database

server

is

already

enabled.

Using

the

API:

In

Figure

15

on

page

47,

before

enabling

the

table,

the

code

creates

the

table

and

table

spaces.

The

example

includes

some

error-checking

code.

The

complete

sample

program

is

in

the

ENABLE

member

of

the

SAMPLES

partitioned

data

set,

and

in

ENABLE.C

file

in

the

SAMPLES

Open

Edition

subdirectory.

displays

sample

code

that

enables

a

table.

Enabling

tables

46

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

char

tableName[8+18+1]

=

"sobay_catalog

SQLCHAR

szCreate_DB2390[]="CREATE

TABLE

%s(%s

mmdbsys.DB2Image,

%s

mmdbsys.DB2Video,

%s

mmdbsys.DB2Audio,

artist

varchar(25),

title

varchar(25)

stock_no

char(11),

tw

char(10),

price

char(10))";

SQLCHR

stmt02[]="CREATE

TABLESPACE

%s

SEGSIZE

8

BUFFERPOOL

BP32K

%s";

SQLCHR

stmt03[]="CREATE

LOB

TABLESPACE

%s

LOG

NO

%s";

SQLCHR

stmt04[]="USING

STOGROUP

SYSDEFLT

PRIQTY

50

SECQTY

10"

%s;

char

tsp[8+1]="SAMPS";

/*

define

tablespace

*/

char

tspli[8+1]="SAMPLI";

/*

define

lob

tablespace

for

image

*/

char

tspblk[255]="";

/*

define

template

for

enabling

*/

/*

table

(’tsp,using

blk,

*/

/*

lob

tsp,

lob

inx

using

blk)

*/

/*-----create

table

--*/

printf("%s:

Creating

table

......\n",

program);

if

(SERVER_IS_DB2390)

sprintf((char*)

buffer,

(char*)

szCreate_DB2390,

tableName,

imageColumn,

videoColumn,

audioColumn):

rc

=

SQLAllocStmt(hdbc,

&hstmt);

cliCheckError(SQL_NULL_HENV,

hdbc,

SQL_NULL_HSTMT,

rc);

rc

=

SQLExecDirect(hstmt,

buffer,

SQL_NTS);

cliCheckError(SQL_NULL_HENV,

SQL_NULL_HDBC,

hstmt,

rc);

/*----

create

tablespaces

--*/

if

(SERVER_IS_DB2390)

{

printf("%s:Creating

tablespace

%s

......\n",

program,

tsp);

sprintf((char*)

buffer,

(char*)

stmt02,

tsp,

(char*)

stmt04);

rc=

SQLExecDirect(hstmt,

buffer,

SQL_NTS);

cliCheckError(SQL_NULL_HENV,

SQL_NULL_HDBC,

hstmt,

rc);

/*----

create

lob

tablespace

for

image

------------------------*/

printf("%s:Creating

LOB

%s

for

image

......\n",

program,

tsp);

sprintf((char*)

buffer,

(char*)

stmt03,

tspli,

(char*)

stmt04);

rc=

SQLExecDirect(hstmt,

buffer,

SQL_NTS);

cliCheckError(SQL_NULL_HENV,

SQL_NULL_HDBC,

hstmt,

rc);

/*----

commit

changes

to

database

-----------------------------*/

rc=

SQLTransact(henv,

hdbc,

SQL_COMMIT);

cliCheckError(henv,

hdbc,

SQL_NULL_HDBC,

hstmt,

rc);

}

/*----

end

of

create

tablespaces

-------------------------------------*/

Figure

15.

Sample

code

that

enables

a

table

(Part

1

of

2)

Enabling

tables

Chapter

6.

Preparing

data

objects

for

extender

data

47

Using

the

db2ext

command

line:

In

this

example,

the

table

already

exists,

and

the

database

server

is

enabled.

enable

table

employee

for

db2image

using

tbspace1,,ltbspace1

Enabling

columns

Use

the

DBxEnableColumn

API

(where

x

is

a

for

audio,

i

for

image,

or

v

for

video)

or

the

ENABLE

COLUMN

command

to

enable

a

column

for

a

DB2

extender.

When

you

issue

the

API

or

command,

you

specify

the

pertinent

table

and

column.

When

you

enable

a

column,

the

extender

adds

information

to

the

administrative

support

tables

that

belong

to

the

user

table.

To

enable

a

column,

you

need

either:

v

SYSADM

authority

v

DBADM

authority

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

A

user

ID

of

MMDBSYS

with

a

secondary

authorization

ID

of

MMDBSYS;

the

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table.

The

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

In

the

following

examples,

the

PICTURE

column

in

the

EMPLOYEE

table

is

enabled

to

hold

image

data.

The

database

server

and

table

are

already

enabled.

Using

the

API:

This

example

includes

some

error-checking

code.

The

complete

sample

program

is

in

the

ENABLE

member

of

the

SAMPLES

partitioned

data

set,

and

in

ENABLE.C

file

in

the

SAMPLES

Open

Edition

subdirectory.

/*----

enable

table

for

image

extender

----------------------------------*/

printf("%s:

Enabling

table......\n",

program);

step="DBiEnableTable";

if

(SERVER_IS_DB2390)

{

sprintf((char*)

tspblk,

"%s,

%s,

%s,

%s",

tsp,

(char*)stmt04,

tspli,

(char*)

stmt04);

rc

=

DBiEnableTable(tspblk,

tableName);

}

if

(rc

<

0)

{

printf("%s:

%s

failed!\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

if

(sqlcode)

printf("sqlcode=%i,

"sqlcode");

printf("errorMsgText=%s\n",

errorMsgText);

}

else

if

(rc

>

0)

{

printf("%s:

%s,

warning

detected.\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

printf("warningMsgText=%s\n",

errorMsgText);

}

else

printf("%s:

%s

OK\n",

program,

step)

/*----

end

of

enable

table

--*/

Figure

15.

Sample

code

that

enables

a

table

(Part

2

of

2)

Enabling

tables

48

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Using

the

db2ext

command

line:

In

this

example,

the

column

already

exists,

and

the

database

server

and

table

are

enabled.

enable

column

employee

picture

for

db2image

Disabling

data

objects

If

you

remove

extender

data

from

a

database

server,

table,

or

column,

you

no

longer

need

it

to

be

enabled.

You

have

two

ways

to

disable

data

objects:

the

DISABLE

commands

and

the

APIs.

For

more

information

about

the

extender

commands,

see

Chapter

15,

“Administration

commands

for

the

client,”

on

page

357.

For

more

information

about

the

extender

APIs,

see

Chapter

14,

“Application

programming

interfaces,”

on

page

219.

Before

dropping

a

table

or

database

server

that

contains

extender

data,

disable

it.

char

imageColumn[18+1]

=

"covers";

/*----

enable

column

for

image

extender

----*/

printf("%s:

Enabling

columns......\n",

program);

step="DBiEnableColumn";

rc

=

DBiEnableColumn(tableName,

imageColumn);

if

(rc

<

0)

{

printf("%s:

%s

failed!\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

if

(sqlcode)

printf("sqlcode=%i,

",

sqlcode);

printf("errorMsgText=%s\n",

errorMsgText)

}

else

if

(rc

>

0)

{

printf("%s:

%s,

warning

detected.\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

printf("warningMsgText=%s\n",

errorMsgText);

}

else

printf("%s:

%s

OK\n",

program,

step);

/*----

enable

column

for

image

extender

----*/

Figure

16.

Sample

code

that

enables

a

column

Enabling

columns

Chapter

6.

Preparing

data

objects

for

extender

data

49

Disabling

50

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

7.

Tracking

data

objects

and

media

files

As

you

create

and

debug

applications

that

use

the

DB2

Extenders,

it

is

useful

to

know

which

data

objects

are

enabled

for

extender

data.

For

example,

if

you

can

determine

that

a

certain

table

is

enabled

for

image

data,

your

application

can

successfully

store

image

files

in

that

table.

It

is

also

useful

to

understand

the

correlation

between

user

tables

and

external

media

files,

for

example,

which

tables

refer

to

a

specific

file

or

which

files

are

referenced

by

a

specific

table.

It

is

also

useful

to

discover

if

your

tables

refer

to

files

that

no

longer

exist

on

the

system.

You

need

appropriate

privileges:

You

need

to

have

access

to

a

table

in

order

to

track

data

in

the

table.

If

you

want

to

perform

comprehensive

tracking

operations,

such

as

find

which

entries

in

all

user

tables

in

the

database

server

refer

to

a

file,

you

need

SYSADM

authority,

DBADM

authority,

or

SELECT

privilege

on

enabled

columns

in

all

searched

user

tables

and

associated

administrative

support

tables.

If

you

do

not

have

access

to

all

the

tables,

the

extenders

will

return

tracking

information

only

for

those

tables

that

you

can

access.

They

will

also

return

a

code

indicating

that

you

do

not

have

access

authority

to

some

of

the

required

tables.

Checking

the

status

of

data

objects

You

can

use

the

DBxIsServerEnabled

API

or

the

GET

EXTENDER

STATUS

command

to

check

whether

a

database

server

is

enabled

for

an

extender.

The

following

example

determines

if

the

current

database

server

is

enabled

for

the

Image

Extender.

The

database

server

is

already

connected.

The

complete

sample

program

is

in

the

API

member

of

the

SAMPLES

partitioned

data

set,

and

in

API.C

file

in

the

SAMPLES

Open

Edition

subdirectory.

Using

the

API:

The

sample

code

in

Figure

17

on

page

52

includes

some

error-checking

code.

©

Copyright

IBM

Corp.

1998,

2001

51

Using

the

db2ext

command

line:

get

extender

status

Checking

the

status

of

user

tables

and

columns

is

similar

to

checking

the

status

of

a

database

server.

Use

the

DBxIsTableEnabled

and

DBxIsColumnEnabled

APIs,

or

the

GET

EXTENDER

STATUS

command.

Finding

table

entries

that

reference

files

You

can

check

which

entries

in

user

tables

refer

to

an

external

media

file.

Use

the

DBxAdminIsFileReferenced

API

to

check

which

entries

in

all

or

a

subset

of

user

tables

in

the

current

database

server

refer

to

an

external

media

file.

Use

the

DBxIsFileReferenced

API

to

check

which

entries

in

a

specific

user

table

refer

to

an

external

media

file.

Using

the

API:

The

sample

code

in

Figure

18

on

page

53

returns

the

number

of

times

a

file

is

referenced

and

where

it

is

referenced.

It

includes

some

error-checking

code.

The

complete

sample

program

is

in

the

API

member

of

the

SAMPLES

partitioned

data

set,

and

in

API.C

file

in

the

SAMPLES

Open

Edition

subdirectory.

/*----

Query

the

database

server

using

DBiIsServerEnabled

API.

----------*/

step="DBiIsServerEnabled

API";

rc

=

DBiIsServerEnabled(&status);

if

(rc

<

0)

{

printf("%s:

%s

FAILED!\n",

argv[0],

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

printf("sqlcode=%i,

errorMsgText=%s\n",

sqlcode,

errorMsgText);

fail

=

TRUE;

}

else

if

(rc

>

0)

{

printf("%s:

%s,

warning

detected.\n",

argv[0],

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

printf("sqlcode=%i,

errorMsgText=%s\n",

sqlcode,

errorMsgText);

}

else

{

if

(status

==

1)

{

printf("%s:

\"%s\"

database

server

is

enabled

for

Image

Extender\n",

argv[0],

dbName);

printf("%s:

%s

PASSED\n\n",

argv[0],

step);

}

else

if

(status

==

0)

{

printf("%s:

\"%s\"

database

server

is

not

enabled

for

Image

Extender\n",

argv[0],

dbName);

printf("%s:

%s

PASSED\n\n",

argv[0],

step);

}

else

printf("%s:

%s

FAILED,

invalid

status!\n",

argv[0],

step);

}

Figure

17.

Sample

code

that

checks

if

a

database

server

is

enabled

Checking

for

enablement

52

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Finding

files

referenced

by

table

entries

Use

the

DBxAdminGetReferencedFiles

API

or

the

GET

REFERENCED

FILES

command

to

list

the

external

media

files

that

are

referred

to

by

all

or

a

subset

of

the

user

tables

in

the

current

database

server.

Use

the

DBxGetReferencedFiles

API

or

the

GET

REFERENCED

FILES

command

to

list

the

external

media

files

that

are

referenced

in

a

specific

table.

Using

the

API:

The

sample

code

in

Figure

19

on

page

54

returns

the

number

of

files

it

finds

and

a

list

of

the

files.

The

complete

sample

program

is

in

the

API

member

of

the

SAMPLES

partitioned

data

set,

and

in

the

API.C

file

in

the

SAMPLES

Open

Edition

subdirectory.

/*----

Query

the

database

server

using

DBiAdminIsFileReferenced

API.

------*/

step="DBiAdminIsFileReferenced

API";

rc

=

DBiAdminIsFileReferenced((char*)

uid,

filename,

&count,

&filelist);

if

(rc

<

0)

{

printf("%s:

%s

FAILED!\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

printf("sqlcode=%i,

errorMsgText=%s\n",

sqlcode,

errorMsgText);

}

else

if

(rc

>

0)

{

printf("%s:

%s,

warning

detected.\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

printf("sqlcode=%i,

errorMsgText=%s\n",

sqlcode,

errorMsg

Text);

}

else

{

if

(count

==

0)

printf("%s:

\"%s\"

file

is

not

referenced\n",

program,

filename);

else

{

printf("%s:

\"%s\"

file

is

referenced

%d

times\n",

program,

filename);

for

(i=0;

i

<

count;

i++)

{

/*

filename

is

NULL

for

any

IsFileReferenced

APIs

*/

printf

("filename

=

%s\n",

filelist[i].filename);

printf

("\tqualifier

=

%s\n",

filelist[i].tqualifier);

printf

("\ttable

=

%s\n",

filelist[i].tname);

printf

("\thandle

=

%s\n",

filelist[i].handle);

printf

("\tcolumn

=

%s\n",

filelist[i].column);

if

(filelist[i].filename)

free

(filelist[i].filename);

}

}

if

(filelist)

free

(filelist);

printf("%s:

%s

PASSED\n\n",

argv[0],

step);

}

Figure

18.

Sample

code

that

checks

if

a

file

is

referenced

by

user

tables

Listing

referenced

files

Chapter

7.

Tracking

data

objects

and

media

files

53

Using

the

db2ext

command

line:

get

referenced

files

user

anitas

for

db2image

Checking

if

media

files

exist

Suppose

that

someone

deletes

a

media

file

from

the

system

but

does

not

update

the

user

table

that

references

it.

You

might

want

to

list

all

the

inaccessible

media

files

that

your

user

tables

reference.

Use

the

DBxAdminGetInaccessibleFiles

API

or

the

GET

INACCESSIBLE

FILES

command

to

list

the

inaccessible

media

files

that

are

referenced

by

all

or

a

subset

of

the

user

tables

in

the

current

database

server.

Use

the

DBxGetInaccessibleFiles

API

or

the

GET

INACCESSIBLE

FILES

command

to

list

the

inaccessible

media

files

that

are

referenced

by

a

specific

table.

/*----

Query

the

database

using

DBiAdminGetReferencedFiles

API.

----------*/

step="DBiAdminGetReferencedFiles

API"

rc

=

DBiAdminGetReferencedFiles((char*)

uid,

&count,

&filelist);

if

(rc

<

0)

{

printf("%s:

%s

FAILED!\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

printf{"sqlcode=%i,

errorMsgText=%s\n",

sqlcode,

errorMsgText);

}

else

if

(rc

>

0)

{

printf("%s:

%s,

warning

detected.\n",

program,

step);

printMsg(rc);

DBiGetError(&sqlcode,

errorMsgText);

printf("sqlcode=%i,

errorMsgText=%s\n",

sqlcode,

errorMsgText);

}

else

{

if

(count

==

0)

printf("%s:

no

referenced

files\n",

program);

else

{

printf("%s:

%d

referenced

files\n",

program,

count);

for

(i=0;

i

<

count;

i++)

{

printf

("filename

=

%s\n",

filelist[i].filename);

printf

("\tqualifier

=

%s\n",

filelist[i].tqualifier);

printf

("\ttable

=

%s\n",

filelist[i].tname);

printf

("\thandle

=

%s\n",

filelist[i].handle);

printf

("\tcolumn

=

%s\n",

filelist[i].column);

if

(filelist[i].filename)

free

(filelist[i].filename);

}

}

if

(filelist)

free

(filelist);

printf("%s:

%s

PASSED\n\n",

argv[0],

step);

}

Figure

19.

Sample

code

that

gets

a

list

of

referenced

files

Listing

referenced

files

54

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

8.

Granting

and

revoking

privileges

on

administrative

support

tables

Users

issue

UDFs

to

select,

insert,

update,

or

delete

image,

audio,

and

video

objects

from

a

user

table.

To

perform

the

requested

operations,

the

UDFs

must

be

able

to

access,

and

if

necessary

insert,

update,

and

delete

in,

the

administrative

support

tables

that

hold

attribute

information

for

the

objects.

For

the

owner

of

a

user

table,

the

extenders

automatically

give

the

UDFs

the

access

they

need

to

handle

the

requested

operation.

However

users

other

than

the

table

owner

who

need

to

select

an

object

from

the

user

table

must

be

granted

select

privilege

on

the

administrative

support

tables.

In

addition,

users

who

perform

QBIC

operations

on

image

objects

in

a

user

table

must

have

appropriate

privileges

on

the

administrative

support

tables

that

comprise

the

QBIC

catalog

for

those

objects.

For

example

a

user

who

issues

a

QBIC

query

against

a

column

of

images

must

have

SELECT

privilege

on

the

QBIC

catalog

tables

for

the

image

column.

A

user

who

makes

changes

to

the

QBIC

catalog

should

have

SELECT,

INSERT,

UPDATE,

and

DELETE

privilege

on

the

associated

QBIC

catalog

tables.

The

owner

of

a

user

table

or

a

DBA

(with

GRANT

privilege)

for

the

database

can

use

the

DB2

extender

command

GRANT

to

grant

privileges

on

the

administrative

support

tables.

When

you

issue

the

GRANT

command,

you

specify:

v

The

required

privilege,

for

example,

SELECT

or

UPDATE.

v

The

name

of

the

extender:

DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO.

You

can

also

specify

ALL

for

all

three

extenders.

v

The

name

of

the

user

table.

v

The

ID

of

the

user.

You

can

precede

the

user

ID

with

the

optional

keyword

USER.

You

can

also

specify

PUBLIC

for

all

users.

If

you

specify

SELECT,

you

grant

SELECT

privilege

to

the

specified

users

on

the

administrative

support

tables

for

the

named

extenders

that

are

associated

with

the

user

table.

If

you

specify

DB2IMAGE,

you

also

grant

SELECT

privilege

on

the

administrative

support

tables

for

the

QBIC

catalogs

associated

with

the

user

table.

For

example,

the

following

command

grants

SELECT

privilege

on

the

administrative

support

tables

for

the

Image

Extender

that

are

associated

with

the

employee

table.

The

privilege

is

granted

to

user

ID

ajones.

The

command

also

grants

to

user

ID

ajones

SELECT

privilege

on

the

QBIC

catalogs

associated

with

the

employee

table:

grant

select

for

db2image

on

employee

to

ajones

The

following

command

grants

SELECT

privilege

on

the

administrative

support

tables

for

the

Image,

Audio,

and

Video

Extenders

that

are

associated

with

the

employee

table.

The

privilege

is

granted

to

all

users.

The

command

also

grants

to

all

users

SELECT

privilege

on

the

QBIC

catalogs

associated

with

the

employee

table:

grant

select

for

all

on

employee

to

public

For

insert,

update,

or

delete

operations,

the

extenders

check

to

determine

if

the

user

has

the

needed

INSERT,

UPDATE,

or

DELETE

privilege

on

the

user

table.

If

the

user

has

the

required

privilege,

the

extenders

allow

the

UDFs

to

access

the

administrative

support

tables,

as

required.

©

Copyright

IBM

Corp.

1998,

2001

55

To

grant

INSERT,

UPDATE,

and

DELETE

privileges

on

the

QBIC

Catalog

tables,

specify

UPDATE

and

DB2Image

in

the

GRANT

command.

For

example,

the

following

command

grants

INSERT,

UPDATE,

and

DELETE

privileges

to

user

ID

ajones

on

the

QBIC

Catalog

tables

associated

with

the

employee

table:

grant

update

for

db2image

on

employee

to

user

ajones

When

it

is

no

longer

appropriate

for

a

user

to

access

an

object

in

a

user

table,

the

owner

of

the

user

table

or

a

DBA

(with

GRANT

privilege)

for

the

database

can

revoke

the

user’s

SELECT

provilege

on

the

administrative

support

tables.

This

also

includes

administrative

support

tables

that

comprise

QBIC

catalogs.

Use

the

DB2

extender

command

REVOKE

to

revoke

privileges

on

the

administrative

support

tables

and

QBIC

catalog

tables.

The

format

of

the

REVOKE

command

is

similar

to

the

GRANT

command.

For

example,

the

following

command

revokes

SELECT

privilege

on

the

administrative

support

tables

for

the

Image

Extender

associated

with

the

employee

table.

The

privilege

is

revoked

for

user

ID

ajones.

The

command

also

revokes

SELECT

privilege

on

the

QBIC

Catalog

tables

associated

with

the

employee

table:

revoke

select

for

db2image

on

employee

from

ajones

You

can

also

revoke

INSERT,

UPDATE,

and

DELETE

privileges

on

the

administrative

support

tables

that

comprise

QBIC

catalogs.

Use

the

UPDATE

parameter

on

the

REVOKE

command.

For

example,

the

following

command

revokes

INSERT,

UPDATE,

and

DELETE

privileges

on

the

QBIC

Catalog

tables

associated

with

the

employee

table.

The

privileges

are

revoked

for

user

ID

ajones.

revoke

update

for

db2image

on

employee

from

ajones

Grant

privileges

on

a

QBIC

catalog

after

all

features

are

added:

Privileges

granted

on

administrative

support

tables

that

comprise

a

QBIC

catalog

include

privileges

on

QBIC

features

tables,

but

only

for

features

that

have

been

already

been

added

to

the

catalog.

If

you

add

a

feature

to

the

catalog

after

you

grant

privileges

on

the

catalog,

you

will

have

to

grant

privileges

on

the

catalog

again.

So

you

should

grant

privileges

on

a

QBIC

catalog

only

after

the

catalog

is

created

and

after

all

the

features

have

been

added.

56

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Part

3.

Programming

for

image,

audio,

and

video

data

Chapter

9.

Programming

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Using

extender

UDFs

and

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Tasks

you

can

perform

with

extender

UDFs

and

APIs

.

.

.

.

.

.

.

.

.

.

. 60

Sample

table

for

extender

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Before

you

begin

programming

for

DB2

Extenders

.

.

.

.

.

.

.

.

.

.

.

. 61

Including

extender

definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Specifying

UDF

and

UDT

names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Transmitting

large

objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

If

the

object

is

transmitted

between

a

table

and

a

server

file

.

.

.

.

.

. 64

If

the

object

is

transmitted

to

or

from

a

client

buffer

.

.

.

.

.

.

.

.

. 64

Using

LOB

locators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

If

the

object

is

transmitted

to

or

from

a

client

file

.

.

.

.

.

.

.

.

.

. 65

Specifying

file

names

when

you

transmit

objects

.

.

.

.

.

.

.

.

.

. 66

Handling

return

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Preparing

a

DB2

extender

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Preparing

a

DB2

application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Additional

steps

for

DB2

extender

applications

.

.

.

.

.

.

.

.

.

.

.

. 68

Binding

files

for

workstation

clients

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Including

MMDBSYS_CLIENT

packages

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Using

the

DSNALI

call

to

allocate

resources

.

.

.

.

.

.

.

.

.

.

.

. 69

Configuring

the

ODBC

Initialization

file

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Unicode

support

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Chapter

10.

Storing,

retrieving,

and

updating

objects

.

.

.

.

.

.

.

.

. 71

Image,

audio,

and

video

formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Image

conversion

options

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Storing

an

image,

audio,

or

video

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

DB2Image,

DB2Audio,

and

DB2Video

UDF

formats

.

.

.

.

.

.

.

.

.

. 74

DB2ImageA,

DB2AudioA,

and

DB2VideoA

UDF

formats

.

.

.

.

.

.

.

.

. 76

Storing

an

object

that

resides

on

the

client

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Storing

an

object

that

resides

on

the

server

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Specifying

database

or

file

storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Identifying

the

format

for

storage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Identifying

the

format

for

storage

without

conversion

.

.

.

.

.

.

.

.

. 79

Identifying

the

formats

and

conversion

options

for

storage

with

format

conversion

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Storing

an

object

with

user-supplied

attributes

.

.

.

.

.

.

.

.

.

.

.

. 81

Storing

a

thumbnail

(image

and

video

only)

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Storing

a

comment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Retrieving

an

image,

audio,

or

video

object

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Content

UDF

formats

for

retrieval

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Retrieving

an

object

to

the

client

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Retrieving

an

object

to

a

client

without

format

conversion

.

.

.

.

.

.

. 85

Retrieving

an

image

to

a

client

with

conversion

.

.

.

.

.

.

.

.

.

.

. 86

Retrieving

an

object

to

a

server

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Retrieving

and

using

attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Retrieving

comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Updating

an

image,

audio,

or

video

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Content

UDF

formats

for

updating

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

ContentA

UDF

formats

for

updating

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Replace

UDF

formats

for

updating

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

ReplaceA

UDF

formats

for

updating

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Updating

an

object

from

the

client

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

©

Copyright

IBM

Corp.

1998,

2001

57

Updating

an

object

from

the

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Specifying

database

or

file

storage

for

updates

.

.

.

.

.

.

.

.

.

.

.

. 97

Identifying

the

format

for

update

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Identifying

the

format

for

update

without

conversion

.

.

.

.

.

.

.

.

. 98

Identifying

the

formats

and

conversion

options

for

update

with

format

conversion

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Updating

an

object

with

user-supplied

attributes

.

.

.

.

.

.

.

.

.

.

.

. 99

Updating

a

thumbnail

(image

and

video

only)

.

.

.

.

.

.

.

.

.

.

.

. 100

Updating

a

comment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Chapter

11.

Displaying

or

playing

an

image,

audio,

or

video

object

.

.

. 103

Using

the

display

or

play

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Identifying

a

display

or

play

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Specifying

BLOB

or

file

content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Specifying

a

wait

indicator

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Displaying

a

thumbnail-size

image

or

video

frame

.

.

.

.

.

.

.

.

.

.

. 105

Displaying

a

full-size

image

or

video

frame

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Playing

an

audio

or

video

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

Chapter

12.

Querying

images

by

content

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

How

to

query

by

image

content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Managing

QBIC

catalogs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Creating

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Opening

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

Adding

a

feature

to

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Removing

a

feature

from

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Retrieving

information

about

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

. 112

Manually

cataloging

a

column

of

images

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Recataloging

images

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Closing

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Deleting

a

QBIC

catalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

QBIC

catalog

sample

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Building

queries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Specifying

a

query

string

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Feature

value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Feature

weight

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Using

a

query

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Editing

and

running

job

DMBSETUP

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Creating

a

query

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Adding

a

feature

to

a

query

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Specifying

the

data

source

for

a

feature

in

a

query

object

.

.

.

.

.

.

. 125

Setting

the

weight

of

a

feature

in

a

query

object

.

.

.

.

.

.

.

.

.

. 128

Saving

and

reusing

a

query

string

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Retrieving

information

about

a

query

object

.

.

.

.

.

.

.

.

.

.

.

. 129

Removing

a

feature

from

a

query

object

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Deleting

a

query

object

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Issuing

queries

by

image

content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Querying

images

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Retrieving

an

image

score

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Retrieving

the

score

of

a

single

image

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Retrieving

the

score

of

multiple

images

.

.

.

.

.

.

.

.

.

.

.

.

. 133

QBIC

query

sample

program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

58

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

9.

Programming

overview

This

chapter

provides

an

overview

of

programming

for

the

DB2

Extenders.

It

gives

information

that

you

need

before

you

begin

programming

for

the

Extenders,

and

presents

a

sample

application

that

illustrates

how

to

code

for

an

extender.

Using

extender

UDFs

and

APIs

The

DB2

Extenders

provide

user-defined

functions

to

store,

access,

and

manipulate

image,

audio,

and

video

data

in

a

database

server.

You

code

requests

for

these

UDFs

in

your

application

program

using

SQL

statements

in

the

same

way

that

you

request

SQL

built-in

functions.

Like

built-in

functions,

UDFs

are

run

in

the

database

server.

The

following

SQL

statements

in

a

C

application

program

request

an

Image

Extender

UDF

named

DB2Image

to

store

an

image

in

a

database

table;

the

content

of

the

source

image

is

in

a

server

file:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

/*id*/

'Anita

Jones',

/*name*/

DB2IMAGE(

/*Image

Extender

UDF*/

CURRENT

SERVER,

/*database

server*/

'/employee/images/ajones.bmp',

/*image

content*/

'ASIS',

/*keep

the

image

format*/

:hvStorageType,

/*store

image

in

DB

as

BLOB*

'Anita''s

picture')

/*comment*/

);

You

use

extender

application

programming

interfaces

to

display

images

and

play

audio

or

video

objects.

You

code

these

APIs

using

client

function

calls

in

C.

The

functions

are

run

in

the

client.

The

following

C

statements

include

an

API

that

is

named

DBiBrowse.

The

API

retrieves

the

data

for

an

image

handle

and

starts

a

browser

to

display

the

image:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_hdl[251];

EXEC

SQL

END

DECLARE

SECTION

EXEC

SQL

SELECT

PICTURE

INTO

:hvImg_hdl

WHERE

NAME=

'Robert

Smith';

rc=DBiBrowse(

"ib

%s",

/*image

browser*/

MMDB_PLAY_HANDLE,

/*use

image

handle*/

hvImg_hdl,

/*image

handle*/

MMDB_PLAY_NO_WAIT);

/*run

browser

independently*/

©

Copyright

IBM

Corp.

1998,

2001

59

Tasks

you

can

perform

with

extender

UDFs

and

APIs

Table

6

lists

the

tasks

that

you

can

perform

with

the

extender

UDFs

and

APIs

and

shows

where

each

task

is

described.

Table

6.

Tasks

you

can

perform

with

DB2

extender

APIs

Task

See

Store

an

image,

audio,

or

video

object

Page

73

Retrieve

an

image,

audio,

or

video

object

Page

84

Retrieve

and

use

image,

audio,

and

video

attributes

Page

88

Retrieve

comments

associated

with

an

image,

audio,

or

video

object

Page

89

Update

an

image,

audio,

or

video

object

Page

90

Display

an

image

object

Page

103

Display

a

thumbnail-size

image

or

video

frame

Page

105

Play

an

audio

or

video

object

Page

106

Query

images

by

content

Page

107

Sample

table

for

extender

examples

Throughout

this

chapter

you

will

see

programming

examples

that

use

the

DB2

Extenders.

The

examples

assume

that

you

created

a

database

table

that

is

named

EMPLOYEE,

and

that

the

table

contains

personnel

information.

The

table

includes

columns

for

the

identification

and

name

of

employees.

Depending

on

the

extender,

the

table

also

includes

a

column

for

employee

pictures,

voice

greetings,

and

video

clips.

Figure

20

on

page

61

illustrates

the

structure

of

the

employee

table

and

shows

the

SQL

statement

used

to

create

the

table.

Tasks

60

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Before

you

begin

programming

for

DB2

Extenders

Before

you

develop

a

program

that

uses

the

DB2

Extenders,

you

should

be

familiar

with

the

DB2

application

development

process

and

programming

techniques

as

described

in

DB2

Application

Programming

and

SQL

Guide.

The

process

for

developing

programs

that

use

DB2

Extenders

is

essentially

the

same

as

that

for

traditional

DB2

applications.

Your

application

program

code

will

differ

from

a

traditional

DB2

application

because

of

the

new

data

types

and

functions

that

are

defined

by

the

Extenders.

For

example,

Figure

21

on

page

62

shows

an

application

coded

in

C

that

uses

the

Image

Extender

to

identify

GIF

images

stored

in

a

database

table.

After

the

images

are

identified,

the

program

calls

an

image

browser

to

display

them.

As

the

example

illustrates,

an

application

that

uses

a

DB2

extender

needs

to

perform

the

following

functions:

�1�Include

extender

definitions.

The

dmbimage.h

file

in

the

example

is

the

include

(header)

file

for

the

Image

Extender.

The

include

file

defines

the

constants,

variables,

and

function

prototypes

for

the

extender.

�2�Define

host

variables

as

necessary

to

contain

input

to

or

output

from

a

UDF,

or

input

to

an

API

call.

In

the

example,

hvFormat,

hvSize,

hvWidth,

hvHeight,

and

hvComment

are

host

variables

that

are

used

to

contain

data

that

is

retrieved

by

the

Image

Extender

UDFs.

The

host

variable

hvImg_hdl

is

used

to

contain

an

image

handle

that

is

specified

as

input

to

an

Image

Extender

API

call.

�3�Specify

UDF

requests

as

necessary.

In

the

example,

SIZE,

WIDTH,

HEIGHT,

COMMENT,

and

FORMAT

are

Image

Extender

UDFs.

Figure

20.

A

table

used

in

DB2

extender

programming

examples

Before

you

begin

Chapter

9.

Programming

overview

61

�4�Specify

API

calls

as

necessary.

In

the

example,

DBiBrowse

is

an

API

call

to

a

local

C

function

that

displays

images

whose

handles

are

retrieved

from

a

table.

Figure

21

shows

an

application

that

uses

a

DB2

extender.

#include

<stdio.h>

#include

<stdlib.h>

#include

<string.h>

#include

<sqlenv.h>

#include

<sqlcodes.h>

#include

<dmbimage.h>

�1�

int

count=0;

long

main(int

argc,char

*argv[])

{

EXEC

SQL

BEGIN

DECLARE

SECTION;

�2�

char

hvImg_hdl[251];

/*

image

handle

*/

char

hvDBName[17];

/*

database

server

name

*/

char

hvName[40];

/*

employee

name

*/

char

hvFormat[9];

/*

image

format

*/

long

hvSize;

/*

image

size

*/

long

hvWidth;

/*

image

width

*/

long

hvHeight;

/*

image

height

*/

char

hvComment[16385]

short

indComment;

EXEC

SQL

END

DECLARE

SECTION;

*

Set

current

path

*/

EXEC

SQL

SET

CURRENT

PATH

=

mmdbsys,

CURRENT

PATH;

Figure

21.

An

application

that

uses

a

DB2

extender

(Part

1

of

2)

Before

you

begin

62

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Including

extender

definitions

You

need

an

include

(header)

file

in

your

application

program

for

each

extender

that

you

use.

Each

include

file

defines

constants,

variables,

and

function

prototypes

that

are

used

by

the

extender.

The

include

files

are

provided

as

HFS

files,

and

in

a

header

file

partitioned

data

set.

The

names

of

the

include

files

are:

You

bring

the

include

file

into

a

C

program

with

the

#include

directive.

For

example,

the

following

directive

brings

in

the

include

file

for

the

Image

Extender:

#include

<dmbimage.h>

Specifying

UDF

and

UDT

names

The

full

name

of

a

DB2

Extender

UDF

is

mmdbsys.function-name.

The

full

name

of

a

DB2

extender

UDT

is

mmdbsys.type-name,

where

mmdbsys

is

the

schema-name

of

the

function

or

distinct

type.

For

example,

the

full

name

of

the

Content

UDF

is

mmdbsys.Content;

the

full

name

of

the

DB2Image

data

type

that

is

created

by

the

Image

Extender

is

mmdbsys.DB2Image.

You

can

omit

the

mmdbsys

schema-name

if

you

previously

set

the

current

path

to

mmdbsys,

for

example:

SET

CURRENT

PATH

=

mmdbsys,

CURRENT

PATH

/*

*

Select

(query)

using

Image

Extender

UDF

*

*

The

SQL

statement

below

finds

all

images

in

GIF

format.

*/

EXEC

SQL

DECLARE

c1

CURSOR

FOR

SELECT

PICTURE,

NAME,

�3�

SIZE(PICTURE),

WIDTH(PICTURE),

HEIGHT(PICTURE),

COMMENT(PICTURE)

FROM

EMPLOYEE

WHERE

PICTURE

IS

NOT

NULL

AND

FORMAT(PICTURE)

LIKE

'GIF%'

FOR

FETCH

ONLY;

EXEC

SQL

OPEN

c1;

for

(;;)

{

EXEC

SQL

FETCH

c1

INTO

:hvImg_hdl,

:hvName,

:hvSize,

:hvWidth,

:hvHeight,

:hvComment:indComment;

if

(SQLCODE

!=

0)

break;

printf("\nRecord

%d:\n",

++count);

printf("employee

name

=

'%s'\n",

hvName);

printf("image

size

=

%d

bytes,

width=%d,

height=%d\n",

hvSize,

hvWidth,

hvHeight);

printf("comment

=

%s\n",

hvComment);

/*

*

The

API

call

below

displays

the

images

*/

�4�

rc=DBiBrowse

("ib

%s",MMDB_PLAY_HANDLE,hvImg_hdl,

MMDB_PLAY_WAIT);

}

EXEC

SQL

CLOSE

c1;

/*

end

of

program

*/

Figure

21.

An

application

that

uses

a

DB2

extender

(Part

2

of

2)

Before

you

begin

Chapter

9.

Programming

overview

63

Transmitting

large

objects

You

can

transmit

large

objects

such

as

images,

audio

clips,

and

video

clips

between

your

application

and

a

DB2

database

in

various

ways.

The

method

you

use

depends

on

whether

the

object

is

transmitted

to

or

from

a

file

or

memory

buffer.

The

method

you

use

also

depends

on

whether

the

file

is

in

your

client

machine

or

in

the

database

server

machine.

You

can

transmit

an

object

to

a

client

file

only

if

the

file

is

in

a

workstation

client.

If

the

object

is

transmitted

between

a

table

and

a

server

file

When

you

transmit

an

object

between

a

database

table

and

a

server

file,

specify

the

file

path

in

the

appropriate

extender

UDF

request.

Because

the

extender

UDF

and

the

file

are

both

on

the

server,

the

extender

will

be

able

to

find

the

file.

For

example,

in

the

following

SQL

statement,

an

image

whose

content

is

in

a

server

file

is

stored

in

a

database

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2Image(

CURRENT

SERVER,

'/employee/images/ajones.bmp',

'ASIS',

:hvStorageType,

'Anita''s

picture')

);

If

the

object

is

transmitted

to

or

from

a

client

buffer

The

extenders

cannot

directly

access

a

memory

buffer.

If

you

want

to

transmit

an

object

to

or

from

a

buffer

on

your

client

machine,

you

need

a

way

to

do

it

other

than

by

specifying

a

buffer

location.

One

way

to

transmit

an

object

to

or

from

a

buffer

is

through

a

host

variable.

This

is

the

way

you

normally

transmit

objects

between

an

application

and

a

DB2

database.

You

define

and

use

host

variables

for

large

objects

in

the

same

way

as

for

traditional

character

and

numeric

objects.

You

declare

the

host

variables

in

a

DECLARE

section,

assign

them

values

for

transmission,

or

access

values

that

are

transmitted

to

them.

When

you

declare

a

host

variable

for

image,

audio,

or

video

data,

specify

a

data

type

of

BLOB.

When

you

use

a

UDF

to

store,

retrieve,

or

update

an

object,

you

specify

the

appropriate

host

variable

as

an

argument

in

the

UDF

request.

Use

the

same

format

as

for

other

host

variables

that

you

specify

in

an

SQL

statement.

For

example,

the

following

SQL

statements

declare

and

use

a

host

variable

that

is

named

hvaudio

to

transmit

an

audio

clip

to

the

database:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB

(2M)

hvaudio;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2Audio(

CURRENT

SERVER,

Before

you

begin

64

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

:hvaudio,

'WAVE',

CAST(NULL

as

VARCHAR(254)),

'Anita''s

voice')

);

Using

LOB

locators

Large

objects

such

as

audio

and

video

clips

can

be

very

large,

and

using

host

variables

might

not

be

the

most

efficient

way

of

manipulating

them.

A

LOB

locator

might

be

a

better

way

to

manipulate

LOBs

in

your

applications.

A

LOB

locator

is

a

small

(4-byte)

value

stored

in

a

host

variable

that

your

program

can

use

to

refer

to

a

much

larger

LOB

in

the

DB2

database.

Using

a

LOB

locator,

your

program

can

manipulate

the

LOB

as

if

the

LOB

was

stored

in

a

regular

host

variable.

The

difference

is

that

there

is

no

need

to

transport

the

LOB

between

the

database

server

and

the

application

on

the

client

machine.

For

example,

when

you

select

a

LOB

in

a

database

table,

the

LOB

remains

on

the

server,

and

the

LOB

locator

moves

to

the

client.

You

declare

a

LOB

locator

in

a

DECLARE

section

and

use

it

in

the

same

way

as

a

host

variable.

When

you

declare

a

LOB

locator

for

image,

audio,

or

video

data,

specify

a

data

type

of

BLOB_LOCATOR.

For

example,

the

following

SQL

statements

declare

and

use

a

LOB

locator

that

is

named

video_loc

to

retrieve

a

video

clip

from

a

database

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_LOCATOR

video_loc;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

CONTENT(VIDEO)

INTO

:video_loc

FROM

EMPLOYEE

WHERE

NAME=’Anita

Jones’;

If

the

object

is

transmitted

to

or

from

a

client

file

Use

a

file

reference

variable

to

transmit

objects

to

and

from

a

file

on

a

client

workstation.

(If

the

client

file

is

in

a

z/OS

client,

you

can

copy

the

content

of

the

file

to

a

buffer

and

then

transmit

it.

You

can

also

transmit

the

content

to

a

buffer

and

then

copy

to

the

client

file.)

Using

a

file

reference

variable

saves

you

from

having

to

allocate

buffer

space

for

a

large

object

in

your

application

program.

When

you

use

a

file

reference

variable

with

a

UDF,

DB2

passes

the

BLOB

content

directly

between

the

file

and

the

UDF.

You

declare

a

file

reference

variable

in

a

DECLARE

section

and

use

it

in

the

same

way

as

a

host

variable.

When

you

declare

a

file

reference

variable

for

image,

audio,

or

video

data,

specify

a

data

type

of

BLOB_FILE.

However,

unlike

a

host

variable,

which

contains

the

content

of

an

object,

the

file

reference

variable

contains

the

name

of

the

file.

The

size

of

the

file

can

be

no

larger

than

the

size

of

the

BLOB

defined

for

the

UDF.

You

have

various

options

for

how

to

use

a

file

reference

variable

for

input

and

output.

You

choose

the

option

you

want

by

setting

the

FILE_OPTIONS

field

in

the

file

reference

variable

structure

in

your

program.

You

can

choose

from

the

following

options:

Option

for

input:

SQL_FILE_READ.

This

file

can

be

opened,

read,

and

closed.

The

length

of

the

data

in

the

file

(in

bytes)

is

determined

when

the

file

is

opened.

The

data_length

field

of

the

file

reference

variable

structure

holds

the

length

of

the

file

(in

bytes).

Before

you

begin

Chapter

9.

Programming

overview

65

Options

for

output:

SQL_FILE_CREATE.

This

option

creates

a

new

file

if

it

does

not

already

exist.

If

the

file

already

exists,

an

error

message

is

returned.

The

data_length

field

of

the

file

reference

variable

structure

holds

the

length

of

the

file

(in

bytes).

SQL_FILE_OVERWRITE.

This

option

creates

a

new

file

if

it

does

not

already

exist.

If

the

file

already

exists,

the

new

data

overwrites

the

data

in

the

file.

The

data_length

field

of

the

file

reference

variable

structure

holds

the

length

of

the

file

(in

bytes).

SQL_FILE_APPEND.

This

option

appends

the

output

to

the

file

if

the

file

already

exists.

If

the

file

does

not

exist,

it

creates

a

new

file.

The

data_length

field

of

the

file

reference

variable

structure

holds

the

length

of

the

data

that

is

added

to

the

file

(in

bytes),

not

the

total

length

of

the

file.

For

example,

the

following

statements

declare

a

file

reference

variable

that

is

named

Img_file

and

use

it

to

store

an

image,

whose

content

is

in

a

client

file,

into

a

database

table.

Notice

the

SQL_FILE_READ

assignment

in

the

FILE_OPTIONS

field:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_FILE

Img_file;

EXEC

SQL

END

DECLARE

SECTION;

strcpy

(Img_file.name,"/employee/images/ajones.bmp");

Img_file.name_length=strlen(Img_file.name);

Img_file.file_options=SQL_FILE_READ;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2Image(

CURRENT

SERVER,

:Img_file,

'ASIS',

CAST(NULL

as

VARCHAR(254)),

'Anita''s

picture')

);

Specifying

file

names

when

you

transmit

objects

The

DB2

Extenders

give

you

flexibility

in

how

to

specify

file

names

when

you

store,

retrieve,

or

update

objects.

DB2

Extenders

give

you

access

to

files

in

a

file

system

that

is

compatible

with

z/OS

UNIX

services,

for

example,

a

hierarchical

file

system

(HFS).

Although

you

can

specify

a

fully

qualified

file

name,

(that

is,

a

complete

path

followed

by

the

file

name)

for

store,

retrieve,

and

update

operations,

it’s

preferable

to

specify

a

relative

file

name.

In

a

file

system

such

as

HFS,

a

relative

file

name

is

any

file

name

that

does

not

begin

with

a

slash.

If

you

specify

a

relative

file

name,

the

extenders

will

use

the

directory

specifications

in

various

client

and

server

environment

variables

as

a

search

path

to

resolve

the

file

name.

A

full

path

name

consists

of

a

leading

part,

which

is

typically

related

to

mount

points,

and

a

trailing

pathname,

which

uniquely

identifies

the

needed

file.

The

trailing

pathname

is

specified

in

UDFs.

Environment

variables

supply

a

list

of

leading

pathnames

to

search

when

trying

to

resolve

relative

file

names.

See

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413

for

information

about

the

environment

variables

that

the

DB2

Extenders

use

to

resolve

file

names.

The

Extenders

also

convert

file

name

formats

as

appropriate.

When

a

file

name

is

passed

to

the

server,

it

is

converted

to

the

appropriate

format

for

an

z/OS

UNIX

file

Before

you

begin

66

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

system.

For

example,

a

Windows

NT

file

name

such

as

c:\dir1\abc.bmp

is

converted

to

/dir1/abc.bmp

when

passed

to

the

server.

Handling

return

codes

All

embedded

SQL

statements

or

DB2

CLI

calls

in

your

program,

including

those

that

request

DB2

extender

UDFs,

generate

codes

that

indicate

whether

the

embedded

SQL

statement

or

DB2

CLI

call

ran

successfully.

Other

DB2

extender

APIs,

such

as

administrative

APIs,

also

return

codes

that

indicate

success

or

lack

of

success.

Your

program

should

check

and

respond

to

the

codes

that

are

returned

by

embedded

SQL

statements,

CLI

calls,

and

APIs.

For

information

on

handling

these

return

codes,

see

Chapter

16,

“Diagnostic

information,”

on

page

387.

In

situations

where

an

extender

API

cannot

successfully

compelete

its

unit

of

work,

a

rollback

operation

is

performed.

The

API

also

returns

an

error

code.

The

rollback

operation

is

done

so

that

the

database

can

be

returned

to

its

previous

consistency

point.

Refer

to

Chapter

14,

“Application

programming

interfaces,”

on

page

219

for

details.

Preparing

a

DB2

extender

application

Like

all

DB2

programs,

application

programs

that

use

DB2

extender

UDFs

or

APIs

must

be

prepared

before

they

can

be

used.

In

general,

you

prepare

a

DB2

extender

application

in

the

same

way

as

you

prepare

any

DB2

application.

However

there

are

some

additional

steps

that

you

need

to

perform.

You

can

prepare

an

application

that

uses

DB2

extender

UDFs

or

APIs

on

a

workstation

client

or

on

a

z/OS

client.

The

steps

you

follow

depend

on

whether

your

program

runs

in

a

DB2

ODBC

environment.

If

your

program

does

run

in

a

DB2

ODBC

environment,

it

can

include

CLI

calls.

If

your

program

does

not

run

in

an

DB2

ODBC

environment,

it

can

include

embedded

SQL

statements.

In

either

case,

your

program

can

include

calls

to

DB2

extender

APIs.

Preparing

a

DB2

application

To

prepare

a

DB2

application

program,

you

perform

the

following

steps:

v

Precompile

the

source

files

for

the

program.

Precompiling

creates

a

modified

version

of

your

program.

The

SQL

statements

in

the

program

are

replaced

with

C

or

C++

language

inserts.

This

makes

the

program

compatible

with

the

compiler.

Precompiling

also

creates

information

about

the

SQL

statements

in

the

program.

If

you

precompile

the

program

on

a

workstation

client,

the

information

about

the

SQL

statements

is

placed

in

a

bind

file.

If

you

precompile

the

program

on

a

z/OS

client,

the

information

about

the

SQL

statements

is

placed

in

a

Database

Request

Module

(DBRM).

v

Bind

the

bind

file

or

bind

the

DBRM.

Connect

to

the

database

server

before

you

do

the

bind.

The

bind

produces

a

plan.

The

database

server

uses

information

in

the

plan

to

satisfy

SQL

requests

made

by

the

application

program.

You

can

also

bind

a

DBRM

to

a

package.

You

can

then

bind

the

package

to

a

plan,

including

other

packages

and

DBRMs.

v

Compile

the

modified

source

files.

This

creates

an

object

module.

When

you

precompile

a

DB2

extender

application,

specify

the

DLL,

LONGNAME,

and

RENT

options.

v

Prelink

and

link

edit

the

object

module.

Specify

any

needed

DLLs

or

shared

libraries.

This

can

include

extender

client

libraries

or

ODBC

libraries.

How

the

Before

you

begin

Chapter

9.

Programming

overview

67

DLLs

or

shared

libraries

are

specified

depends

on

the

platform.

On

most

UNIX

platforms,

the

DLLs

or

shared

libraries

are

specified

by

name.

In

Windows

environments,

the

DLLs

or

shared

libraries

are

specified

in

a

lib

file.

In

z/OS,

the

DLLs

or

shared

libraries

are

specified

in

export

files.

When

you

prelink

and

link

edit

on

a

z/OS

client,

specify

the

options

that

will

generate

the

following

executable

module

options:

RMODE(ANY),

AMODE(31),

and

RENT.

For

further

information

about

preparing

on

a

workstation

client

a

DB2

application

program

that

does

not

run

in

a

DB2

ODBC

environment,

see

DB2

Universal

Database

Application

Development

Guide,

Version

6.

For

further

information

about

preparing

on

a

z/OS

client

a

DB2

application

program

that

does

not

run

in

a

DB2

ODBC

environment,

see

DB2

Universal

Database

for

OS/390

Version

6

Application

Programming

and

SQL

Guide.

For

further

information

about

preparing

on

a

workstation

client

a

DB2

application

program

that

runs

in

a

DB2

ODBC

environment,

see

DB2

Universal

Database

CLI

Guide

and

Reference,

Version

6.

For

further

information

about

preparing

on

a

z/OS

client

a

DB2

application

program

that

runs

in

a

DB2

ODBC

environment,

see

DB2

Universal

Database

for

OS/390

Version

6

ODBC

Guide

and

Reference.

Additional

steps

for

DB2

extender

applications

In

addition

to

the

general

steps

outlined

in

“Preparing

a

DB2

application”

on

page

67,

there

are

other

steps

you

need

to

take

to

prepare

and

run

a

DB2

extender

application.

Binding

files

for

workstation

clients

The

DB2

Extenders

client

code

for

workstation

clients

have

associated

bind

files

that

you

need

to

bind

to

the

DB2

server.

The

bind

files

for

each

client

platform

are

grouped

together

in

a

listfile,

that

is,

a

file

with

the

extension

.lst.

To

bind

the

files,

connect

to

the

database

server

and

specify

the

bind

command

as

follows:

bind

path/@listfile

grant

public

isolation

cs

where

path

is

the

full

path

name

of

the

directory

in

which

the

listfile

is

located.

The

paths

are:

Table

7.

The

path

name

of

the

listfile.

Path

Client

/usr/lpp/db2ext/lib

AIX

install_path/bin

(the

default

install

path

is

c:\dmb)

Windows

NT,

98,

95

/opt/IBMdb2ex/V6.1/lib

Solaris

Operating

Environment

and

listfile

is

the

name

of

the

listfile.

The

listfiles

are:

Table

8.

The

name

of

the

listfile.

Listfile

Client

dmbmvsb1.lst

AIX

dmbmvsb3.lst

Windows

NT,

98,

95

dmbmvsb8.lst

Solaris

Operating

Environment

For

example,

the

following

command

binds

the

listfile

for

a

Windows

NT

client:

bind

c:\dmb\bin\@dmbmvsb3.lst

grant

public

isolation

cs

Before

you

begin

68

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Including

MMDBSYS_CLIENT

packages

If

your

z/OS

application

includes

calls

to

DB2

extender

APIs,

you

need

to

include

in

your

plan

the

packages

comprised

by

MMDBSYS_CLIENT.*.

If

your

application

does

not

include

any

embedded

SQL

statements

or

does

not

include

CLI

calls,

use

the

plan

DMBAPI

when

you

run

your

application.

DMBAPI

includes

the

packages

that

comprise

MMDBSYS_CLIENT.*.

If

your

application

does

include

CLI

calls,

use

the

plan

DMBACLI

when

you

run

your

application.

Using

the

DSNALI

call

to

allocate

resources

If

your

application

includes

embedded

SQL

statements

and

you

do

not

use

ODBC

to

connect,

you

need

to

attach

your

application

to

the

DB2

subsystem.

There

are

various

ways

to

attach

to

the

DB2

subsystem.

One

way

is

to

use

the

Call

Attachment

Facility

(CAF).

CAF

is

compatible

with

OpenEdition

and

with

TSO

environments.

Use

the

CAF

Open

function,

DSNALI,

to

allocate

resources,

and

to

request

a

DB2

connection.

In

the

DSNALI

call,

you

specify

the

appropriate

plan

name

as

follows:

dsnali

("OPEN",

"subsystem_name","planname",

rc,

reascode)

where

subsystem_name

is

the

name

of

the

DB2

subsystem,

planname

is

the

plan

name,

rc

is

the

return

code,

and

reascode

is

the

reason

code.

For

example,

the

following

DSNALI

call

allocates

resources

for

plan

name

MYPLAN

in

subsystem

V61A:

dsnali("OPEN",

"V61A",

"MYPLAN",

rc,

reascode)

Configuring

the

ODBC

Initialization

file

If

your

application

runs

in

a

DB2

ODBC

environment

on

z/OS,

you

need

to

do

either

of

the

following:

v

Configure

the

ODBC

INI

(initialization)

file,

and

override

the

plan

name

in

the

subsystem

stanza

for

the

initialization

file.

v

Specify

the

plan

name

in

the

SQLDriverConnect

call.

To

configure

the

ODBC

INI

file

in

TSO,

specify

the

DSNAOINI

DD

card

in

the

JCL

or

CLIST

that

starts

your

application.

For

example,

the

following

CLIST

command

specifies

the

DSNAOINI

DD

card

for

an

ODBC

INI

file

named

cli.ini:

ALLOCATE

DD(DSNAOINI),

DA(cli.ini)

SHR

To

configure

the

ODBC

INI

file

for

the

UNIX

shell,

you

need

to

specify

an

environment

variable,

DSNAOINI,

for

example:

export

DSNAOINI

=

./cli.ini

You

need

to

ensure

that

you

override

the

plan

name

in

the

subsystem

stanza

within

the

ODBC

INI

file,

and

not

in

the

common

or

datasource

stanza.

For

example,

the

following

specifies

the

plan

name

DMBACLI

for

the

subsystem

stanza

V61A:

[common]

MVSDEFAULTSSID

=

V61A

[V61A]

PLANNAME

=

DMBACLI

The

following

specifies

the

plan

name

DMBACLI

in

the

SQLDriverConnect

call:

SQLAllocEnv

SQLAllocConnect

SQLDriverConnect

(hdbc

NULL

"planname

=

dmbacli",

...)

Before

you

begin

Chapter

9.

Programming

overview

69

Unicode

support

Observe

the

following

points

regarding

Unicode

support

for

the

Image,

Audio,

and

Video

Extenders:

v

The

only

parameters

that

can

be

a

Unicode

string

are

the

comment

fields

in

the

following

UDFs:

–

mmdbsys.db2image(

)

import

an

image

–

mmdbsys.db2audio(

)

import

an

audio

–

mmdbsys.db2video(

)

import

a

video

–

mmdbsys.replace(

)

replace

an

image,

an

audio,

or

a

video

–

mmdbsys.comment(

)

comment

update

v

If

you

are

planning

to

access

an

Unicode

database,

you

must

use

a

DB2

Extenders

instance

set

up

to

support

Unicode.

An

Unicode

instance

will

only

handle

Unicode

database.

In

order

for

an

extender

instance

to

support

Unicode,

you

set

the

environment

variable

DB2CODEPAGE

to

1208

before

invoking

DMBSTART.

Before

you

begin

70

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

10.

Storing,

retrieving,

and

updating

objects

This

chapter

describes

how

to

use

the

DB2

extender

user-defined

functions

to

store,

retrieve,

and

update

an

image,

audio,

or

video.

Image,

audio,

and

video

formats

Table

9

lists

the

formats

in

which

you

can

store,

retrieve,

or

update

image,

audio,

and

video

objects.

For

image

objects

only,

you

can

have

the

Image

Extender

convert

the

format

of

the

image

as

it

stores,

retrieves,

or

updates

it.

(Audio

and

video

object

formats

cannot

be

converted

when

stored,

retrieved,

or

updated.)

The

Read

and

Write

columns

in

the

table

indicate

which

formats

can

be

read

and

which

formats

can

be

converted

when

written.

When

the

entry

in

the

Read

column

in

the

table

is

x,

the

corresponding

object

format

can

be

used

when

storing,

retrieving,

or

updating.

When

the

entry

in

the

Write

column

is

x,

an

object

(image

only)

can

be

converted

to

the

corresponding

format

when

stored,

retrieved,

or

updated.

For

example,

an

image

in

BMP

format

can

be

converted

to

a

GIF

format

when

stored,

retrieved,

or

updated.

An

image

in

JPG

format

can

be

converted

to

TIF

format.

But

an

image

in

TIF

format

cannot

be

converted

to

JPG

format.

Although

listed

in

the

table

in

uppercase,

format

specifications

in

store,

retrieve,

or

update

requests

are

not

case

sensitive.

For

example,

the

specifications

GIF,

gif,

and

Gif

are

equivalent.

Table

9.

Formats

that

can

be

processed

by

the

DB2

Extenders

Format

Description

Read

Write

Image

Formats

_IM

PS/2®

Audio

Video

Connection

(AVC)

x

BMP

OS/2

-

Microsoft

Windows

bitmap1

x

x

EPS

Encapsulated

PostScript

x

EP2

Encapsulated

level

2

PostScript

x

GIF

Compuserve

GIF89a

(including

animated

GIFs2)

and

87

x

x

IMG

IOCA

image

x

x

IPS

Brooktrout

FAX

card

file

x

x

JPG

JPEG3

(JFIF

format)

x

PCX

PC

paint

file

(grayscale

only)

x

x

PGM

Portable

gray

map

(from

PBMPLUS)

x

x

PS

PostScript

x

PSC

Compressed

PostScript

image

x

PS2

PostScript

level

2

(color)

x

TIF

All

TIFF

5.0

formats

x

x

YUV

Digital

video

for

YUV

x

x

Audio

formats

AIF

or

AIFF

Audio

Interchange

File

Format

x

AIFFC

Audio

Interchange

File

Format

Compressed

x

AU

Sun

audio

file

format

x

©

Copyright

IBM

Corp.

1998,

2001

71

Table

9.

Formats

that

can

be

processed

by

the

DB2

Extenders

(continued)

Format

Description

Read

Write

MIDI

Musical

Instrument

Digital

Interface

x

MPG1

or

MPEG1

Moving

Pictures

Expert

Group

1

x

WAV

or

WAVE

Wave

x

Video

formats

AVI

Audio/Video

Interleaved

x

MPG1

or

MPEG1

Motion

Picture

Coding

Expert

Group

1

x

MPG2

or

MPEG2

Motion

Picture

Coding

Expert

Group

2

x

QT

Quicktime

(AVI)

x

Image

conversion

options

Table

10

lists

the

conversion

options

(in

addition

to

format

conversion)

that

you

can

specify

for

an

image

when

it

is

stored,

retrieved,

or

updated.

The

Image

Extender

applies

your

specifications

to

the

target

image;

the

source

image

is

not

changed.

Each

conversion

option

is

specified

as

a

parameter/value

pair.

The

allowed

values

for

each

parameter

are

listed

in

the

table.

Table

10.

Image

conversion

options

Parameter

Description

Value

-b

Number

of

bits

used

to

represent

each

image

sample

1

or

8

bits

-s4

Scaling

factor

Any

decimal

value

greater

than

zero.

The

scaling

factor

specifies

the

size

ratio

of

the

converted

image

to

the

original.

For

example,

a

scaling

factor

of

0.5

converts

the

image

to

half

of

its

original

size.

A

scaling

factor

of

2.0

converts

the

image

to

twice

its

original

size.

-p

Photometric

(image

inversion).

This

option

changes

the

interpretation

of

an

image,

based

on

the

value

specified.

It

does

not

change

the

image

itself.

This

option

applies

to

black

and

white

or

grayscale

images

only,

and

does

not

apply

to

images

in

GIF

format.

0

=

Ones

are

black

1

=

Ones

are

white

-n

Photometric

(image

inversion).

This

option

changes

an

image

by

inverting

black

to

white,

and

white

to

black.

The

option

applies

to

black

and

white

or

grayscale

images

only.

None

-r4

Rotation

0

=

0

degrees

(no

rotation)

1

=

90

degrees

(counterclockwise)

2

=

90

degrees

(clockwise)

3

=

180

degrees

1. Read

is

supported

for

Windows

Version

2,

Windows

Version

3,

and

Windows

NT

BMP

format.

2. The

DB2

Image

Extender

stores

attribute

information

for

only

the

first

image

in

the

animated

GIF

file.

3. Support

uses

software

that

is

based

in

part

on

the

work

of

the

Independent

JPEG

Group.

Formats

72

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Table

10.

Image

conversion

options

(continued)

Parameter

Description

Value

-x4

Width

in

pixels

Number

of

pixels

-y4

Height

in

pixels

Number

of

pixels

-c

Compression

type

0

=

IBM

MMR

1

=

CCITT

Group

3

1-D

2

=

CCITT

Group

3

2-D

(k=2)

3

=

CCITT

Group

3

2-D

(k=4)

4

=

CCITT

Group

4

6

=

TIFF

Type

2

10

=

Uncompressed

14

=

LZW

15

=

TIFF

Packbits

25

=

JBIG

Storing

an

image,

audio,

or

video

object

Use

the

DB2Image,

DB2Audio,

or

DB2Video

UDF

in

an

SQL

INSERT

statement

to

store

an

image,

audio,

or

video

object

in

a

database.

You

can

store

an

object

whose

source

is

in

a

buffer

or

file

in

a

client

machine

(the

client

file

must

be

in

a

workstation

client)

or

in

a

server

file.

For

any

of

these

sources,

you

can

store

the

object

in

a

database

table

as

a

BLOB,

or

in

a

file

on

the

database

server.

When

you

request

the

UDF,

you

need

to

specify:

v

The

name

of

the

currently

connected

database

server;

this

is

contained

in

the

CURRENT

SERVER

special

register.

v

The

source

of

the

object

content;

this

is

either

in

a

client

buffer,

client

file

(workstation

client

only),

or

server

file.

v

Whether

you

want

to

store

the

content

in

a

database

table

as

a

BLOB,

or

on

a

file

server.

v

The

format

of

the

source.

v

A

comment

to

be

stored

with

the

object

(or

a

null

value

or

empty

string

if

you

do

not

want

to

store

a

comment).

The

Image,

Audio,

and

Video

Extenders

allow

you

to

store

an

object

even

if

they

do

not

recognize

the

object’s

format.

Use

the

DB2ImageA,

DB2AudioA,

or

DB2VideoA

UDF

in

an

SQL

INSERT

statement

to

store

an

image,

audio,

or

video

object

with

an

unrecognized

format

in

a

database.

You

need

to

specify

the

attributes

of

the

object,

its

format,

and

for

video

objects

only,

its

compression

format.

When

you

store

an

image

or

video

with

user-supplied

attributes,

you

can

also

store

a

thumbnail.

A

thumbnail

is

a

miniature

image

representing

the

image

or

video.

For

images

only,

you

have

the

option

of

having

the

format

of

the

image

converted

when

it

is

stored.

If

you

request

format

conversion,

you

need

to

specify

both

the

source

and

target

formats

of

the

image.

In

a

format

conversion

request,

you

can

also

specify

further

changes

to

the

image,

such

as

cropping

it

or

rotating

it.

You

indicate

these

changes

by

specifying

conversion

options.

4. If

you

specify

this

option

for

an

interlaced

GIF

image,

you

should

also

specify

a

compression

type

of

LZW.

Formats

Chapter

10.

Storing,

retrieving,

and

updating

objects

73

Commit

the

store

operation:

Commit

the

unit

of

work

after

you

store

an

image,

audio,

or

video

object

in

a

database.

This

frees

up

locks

that

the

extenders

hold

so

that

you

can

perform

update

operations

on

the

stored

object.

DB2Image,

DB2Audio,

and

DB2Video

UDF

formats

The

DB2Image,

DB2Audio,

and

DB2Video

UDFs

are

overloaded,

that

is,

they

have

different

formats

depending

on

how

the

UDFs

are

used.

Each

UDF

has

the

following

formats

(the

xxxxx

shown

in

the

formats

can

be

Image,

Audio,

or

Video):

Format

1:

Store

an

object

from

a

client

buffer

or

workstation

client

file:

DB2xxxxx(

CURRENT

SERVER,

/*

database

server

name

in

CURRENT

SERVER

REGISTER

*/

content,

/*

object

content

*/

format,

/*

source

format

*/

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

comment

/*

user

comment

*/

);

Format

2:

Store

an

object

from

a

server

file:

DB2xxxxx(

CURRENT

SERVER,

/*

database

server

name

in

CURRENT

SERVER

REGISTER

*/

source_file,

/*

source

file

name

*/

format,

/*

source

format

*/

stortype,

/*

MMDB_STORAGE_TYPE_EXTERNAL=store

*/

/*

in

file

server*/

/*

MMDB_STORAGE_TYPE_INTERNAL=store

*/

/*

as

a

BLOB*/

comment

/*

user

comment

*/

);

The

DB2Image

UDF

includes

the

following

additional

formats:

Format

3:

Store

an

image

from

a

client

buffer

or

workstation

client

file

with

format

conversion:

DB2Image(

CURRENT

SERVER,

/*

database

server

name

in

CURRENT

SERVER

REGISTER

*/

content,

/*

object

content

*/

source_format,

/*

source

format

*/

target_format,

/*

target

format

*/

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

comment

/*

user

comment

*/

);

Format

4:

Store

an

image

from

a

server

file

with

format

conversion:

DB2Image(

CURRENT

SERVER,

/*

database

server

name

in

CURRENT

SERVER

REGISTER

*/

source_file,

/*

server

file

name

*/

source_format,

/*

source

format

*/

target_format,

/*

target

format

*/

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

comment

/*

user

comment

*/

);

Format

5:

Store

an

image

from

a

client

buffer

or

workstation

client

file

with

format

conversion

and

additional

changes:

Storing

74

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DB2Image(

CURRENT

SERVER,

/*

database

server

name

in

CURRENT

SERVER

REGISTER

*/

content,

/*

object

content

*/

source_format,

/*

source

format

*/

target_format,

/*

target

format

*/

conversion_options,

/*

Conversion

options

*/

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

comment

/*

user

comment

*/

);

Format

6:

Store

an

image

from

a

server

file

with

format

conversion

and

additional

changes:

DB2Image(

CURRENT

SERVER,

/*

database

server

name

in

CURRENT

SERVER

REGISTER

*/

source_file,

/*

server

file

name

*/

source_format,

/*

source

format

*/

target_format,

/*

target

format

*/

conversion_options

/*

conversion

options

*/

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

comment

/*

user

comment

*/

);

For

example,

the

following

statements

in

a

C

application

program

insert

a

row

that

includes

an

image

into

the

employee

table.

The

source

image

is

in

a

server

file

that

is

named

ajones.bmp.

The

image

is

stored

in

the

employee

table

as

a

BLOB.

(This

corresponds

to

format

2

above.)

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

/*id*/

'Anita

Jones',

/*name*/

DB2IMAGE(

/*Image

Extender

UDF*/

CURRENT

SERVER,

/*database

server*/

'/employee/images/ajones.bmp',

/*source

file

*/

'ASIS',

/*keep

the

image

format*/

:hvStorageType

/*store

image

in

DB

as

BLOB*/

'Anita''s

picture')

/*comment

*/

);

The

following

statements

in

a

C

application

program

store

the

same

row

into

the

employee

table

as

in

the

previous

example.

However

here

the

image

is

converted

from

BMP

to

GIF

format

as

it

is

stored.

(This

corresponds

to

format

4

above.)

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

/*id*/

'Anita

Jones',

/*name*/

DB2IMAGE(

/*Image

Extender

UDF*

CURRENT

SERVER,

/*database

server*/

'/employee/images/ajones.bmp',

/*source

file

*/

'ASIS',

/*source

image

format*/

'GIF',

/*target

image

format*/

'Anita''s

picture')

/*comment*/

);

When

you

store

an

image,

audio,

or

video

object,

the

extender

computes

attributes

such

as

the

number

of

colors

used

in

the

image,

audio

playing

time,

or

video

compression

format.

The

extender

stores

the

attributes

in

the

database

along

with

Storing

Chapter

10.

Storing,

retrieving,

and

updating

objects

75

other

attributes,

such

as

comments

about

the

object

and

the

identification

of

the

user

who

stored

the

object.

These

attributes

are

then

available

for

you

to

use

in

queries.

DB2ImageA,

DB2AudioA,

and

DB2VideoA

UDF

formats

The

DB2ImageA,

DB2AudioA,

and

DB2VideoA

UDFs

are

overloaded,

that

is,

they

have

different

formats

depending

on

how

the

UDFs

are

used.

Each

UDF

has

the

following

formats

(the

xxxxx

shown

in

the

formats

can

be

Image,

Audio,

or

Video):

Format

1:

Store

an

object

with

user-supplied

attributes

from

a

client

buffer

or

workstation

client

file:

DB2xxxxx(

CURRENT

SERVER,

/*

database

server

name

in

CURRENT

SERVER

REGISTER

*/

content,

/*

object

content

*/

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

comment,

/*

user

comment

*/

attrs,

/*

user-supplied

attributes

*/

tracknames,

/*

MIDI

track

names

(audio

only)

instruments,

/*

MIDI

instrument

names

(audio

only)

format,

/*

source

format

*/

compress_type,

/*

compression

format

(video

only

*/

thumbnail

/*

thumbnail

(image

and

video

only)

*/

);

Format

2:

Store

an

object

with

user-supplied

attributes

from

a

server

file:

DB2xxxxx(

CURRENT

SERVER,

/*

database

server

name

in

CURRENT

SERVER

REGISTER

*/

source_file,

/*

source

file

name

*/

stortype,

/*

MMDB_STORAGE_TYPE_EXTERNAL=store

*/

/*

in

file

server*/

/*

MMDB_STORAGE_TYPE_INTERNAL=store

*/

/*

as

a

BLOB*/

comment,

/*

user

comment

*/

attrs,

/*

user-supplied

attributes

*/

tracknames,

/*

MIDI

track

names

(audio

only)

instruments,

/*

MIDI

instrument

names

(audio

only)

format,

/*

source

format

*/

compress_type,

/*

compression

format

(video

only

*/

thumbnail

/*

thumbnail

(image

and

video

only)

*/

);

For

example,

the

following

statements

in

a

C

application

program

store

a

row

that

includes

an

image

into

the

employee

table.

The

source

image,

which

is

in

a

server

file,

has

a

user-defined

format,

a

height

of

640

pixels,

and

a

width

of

480

pixels.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvImgattrs[100];

EXEC

SQL

END

DECLARE

SECTION;

DB2IMAGEATTRS

*pimgattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

pimgattr

=

(DB2IMAGEATTRS

*)

hvImgattrs;

pimgattr→width=640;

pimgattr→height=480;

DBiPrepareAttrs(pimgattr);

DBEXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

/*

id

*/

Storing

76

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

'Anita

Jones',

/*

name

*/

DB2IMAGEA(

/*

Image

Extender

UDF

*/

CURRENT

SERVER,

/*

database

server

*/

'/employee/images/ajones.bmp',

/*

source

file

*/

:hvStorageType,

/*

stortype

*/

'Anita''s

picture',

/*

user

comment

*/

:hvImgattrs,

/*

user-specified

attributes

*/

'FormatI'

/*

source

format

*/

'')

/*

no

thumbnail

*/

);

When

you

store

an

image,

audio,

or

video

object

with

an

unrecognized

format,

you

need

to

provide

these

attributes

as

input

to

the

UDF.

The

extender

stores

the

attributes

in

the

database

along

with

other

attributes,

such

as

comments

about

the

object

and

the

identification

of

the

user

who

stored

the

object.

These

attributes

are

then

available

for

you

to

use

in

queries.

Storing

an

object

that

resides

on

the

client

Use

a

host

variable

or

a

file

reference

variable

to

transmit

the

contents

of

an

image,

audio,

or

video

object

from

a

client

buffer

or

workstation

client

file

to

the

server.

(If

the

client

file

is

in

a

z/OS

client,

you

can

copy

the

content

of

the

file

to

a

buffer

and

then

transmit

it

to

the

server.)

If

the

object

is

in

a

client

file,

use

a

file

reference

variable

to

transmit

its

content

for

storage

in

the

server.

For

example,

the

following

statements

in

a

C

application

program

define

a

file

reference

variable

named

Audio_file

and

use

it

to

transmit

an

audio

clip

whose

content

is

in

a

client

file.

The

audio

clip

is

stored

in

a

database

table

on

the

server.

Notice

that

the

file_option

field

of

the

file

reference

variable

is

set

to

SQL_FILE_READ

for

input.

Also

notice

that

the

file

reference

variable

is

used

as

the

content

argument

to

the

DB2Audio

UDF.

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_FILE

Audio_file;

EXEC

SQL

END

DECLARE

SECTION;

strcpy

(Audio_file.name,

"/employee/sounds/ajones.wav");

Audio_file.name_length=

strlen(Audio_file.name);

Audio_file.file_options=

SQL_FILE_READ;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2AUDIO(

CURRENT

SERVER,

:Audio_file,

/*

file

reference

variable

*/

'WAVE',

'',

'Anita''s

voice')

);

If

the

object

is

in

a

client

buffer,

use

a

host

variable,

defined

as

either

BLOB

or

BLOB_LOCATOR,

to

transmit

its

content

for

storage

in

the

server.

In

the

following

C

application

program

statements,

a

host

variable

named

Video_loc

is

used

to

transmit

the

contents

of

a

video

clip

for

storage

in

the

server.

The

video

clip

is

stored

in

a

database

table

as

a

BLOB.

Notice

that

the

host

variable

is

used

as

the

content

argument

to

the

DB2Video

UDF.

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_LOCATOR

Video_loc;

EXEC

SQL

END

DECLARE

SECTION;

Storing

Chapter

10.

Storing,

retrieving,

and

updating

objects

77

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2VIDEO(

CURRENT

SERVER,

:Video_loc,

/*

host

variable

*/

'MPEG1',

'',

'Anita''s

video')

);

Storing

an

object

that

resides

on

the

server

When

the

image,

audio,

or

video

you

want

to

store

is

in

a

server

file,

specify

its

path

as

the

content

argument

to

the

UDF.

For

example,

the

following

statement

in

a

C

application

program

stores

a

row

that

includes

an

image

into

the

database.

The

image

content

is

in

a

file

on

the

server.

The

stored

image

remains

in

the

server

file

and

is

pointed

to

from

the

database.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2IMAGE(

CURRENT

SERVER,

'/employee/images/ajones.bmp',

/*source

in

server

file

*/

'BMP',

:hvStorageType,

'Anita''s

picture')

);

Specify

the

correct

path:

When

you

store

an

object

whose

source

is

in

a

server

file,

you

can

specify

the

file’s

fully

qualified

name

or

a

relative

name.

If

you

specify

a

relative

name,

you

need

to

ensure

that

the

appropriate

environment

variables

in

the

DB2

server

include

the

correct

path

for

the

file.

For

information

about

setting

these

environment

variables,

see

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

Specifying

database

or

file

storage

You

can

store

an

image,

audio,

or

video

object

in

a

database

table

as

a

BLOB,

or

in

a

server

file.

If

you

store

the

object

in

a

server

file,

the

database

points

to

the

file.

If

you

store

the

object

from

a

client

buffer

or

client

file

(workstation

client

only),

you

indicate

BLOB

or

server

file

storage

as

a

result

of

what

you

specify

in

the

target_file

parameter.

If

you

specify

a

file

name,

it

indicates

that

you

want

to

store

the

object

in

a

server

file.

If

you

specify

an

empty

string,

it

indicates

that

you

want

to

store

the

object

as

a

BLOB

in

a

database

table.

The

data

type

of

the

target_file

parameter

is

VARCHAR(254).

For

example,

the

following

statements

in

a

C

application

program

store

a

row

that

includes

an

image

into

a

database

table.

The

image

source

is

in

a

client

buffer.

The

image

is

stored

in

a

server

file.

The

database

table

points

to

the

server

file:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_LOCATOR

Img_buf

EXEC

SQL

END

DECLARE

SECTION;

Storing

78

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2IMAGE(

CURRENT

SERVER,

:Img_buf,

'ASIS',

'/employee/images/ajones.bmp',

/*

store

image

in

server

file

*/

'Anita''s

picture')

);

If

you

store

an

object

from

a

server

file,

specify

the

constant

MMDB_STORAGE_TYPE_INTERNAL

to

store

the

object

into

a

database

table

as

a

BLOB.

If

you

want

to

store

the

object

and

have

its

content

remain

in

the

server

file,

specify

the

constant

MMDB_STORAGE_TYPE_EXTERNAL.

MMDB_STORAGE_TYPE_INTERNAL

has

an

integer

value

of

1.

MMDB_STORAGE_TYPE_EXTERNAL

has

an

integer

value

of

0.

For

example,

in

the

following

C

application

program,

an

audio

clip

is

stored

in

a

server

file.

The

source

audio

content

is

already

in

a

server

file.

The

store

operation

places

the

filename

in

the

database

and

thus

makes

the

file

accessible

through

SQL

statements.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2AUDIO(

CURRENT

SERVER,

'/employee/sounds/ajones.wav',

'WAVE',

:hvStorageType,

/*

store

audio

in

server

file

*/

'Anita''s

voice')

);

Identifying

the

format

for

storage

When

you

store

an

object,

you

need

to

identify

its

format.

The

formats

that

you

can

specify

are

listed

in

Table

9

on

page

71.

The

Extenders

will

store

the

image,

audio,

or

video

object

in

the

same

format

as

the

source.

For

image

objects

only,

you

have

the

option

of

having

the

Image

Extender

convert

the

format

of

the

stored

image.

If

you

choose

to

have

the

image

format

converted,

you

need

to

specify

the

format

of

the

source

image

and

the

format

of

the

target

image.

The

target

image

is

the

image

as

stored.

Identifying

the

format

for

storage

without

conversion

Specify

the

format

of

the

source

image,

audio,

or

video

object

when

you

store

the

object

without

format

conversion.

For

example,

the

following

statement

in

a

C

application

program

stores

a

bitmap

(BMP)

image

into

a

database

table.

The

content

of

the

source

is

in

a

server

file.

The

target

image

will

have

the

same

format

as

the

source.

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2IMAGE(

CURRENT

SERVER,

'/employee/images/ajones.bmp',

Storing

Chapter

10.

Storing,

retrieving,

and

updating

objects

79

'BMP',

/*image

in

BMP

format

*/

'',

'Anita''s

picture')

);

You

can

also

specify

a

null

value

or

empty

string

as

the

format,

or

for

the

Image

Extender

only,

the

character

string

ASIS.

The

extender

will

then

determine

the

format

by

examining

the

source.

Use

NULL

or

ASIS

for

recognizable

formats:

Specify

a

null

value,

empty

string,

or

ASIS

only

if

the

format

is

recognizable

to

the

extender,

that

is,

if

it

is

one

of

the

formats

listed

for

the

extender

in

Table

9

on

page

71.

Otherwise,

the

extender

will

not

be

able

to

store

the

object.

Identifying

the

formats

and

conversion

options

for

storage

with

format

conversion

Specify

the

format

of

both

the

source

and

target

images

when

you

store

an

image

with

format

conversion.

Table

9

on

page

71

lists

which

format

conversions

are

allowed.

In

addition,

you

can

specify

conversion

options

that

identify

additional

changes,

such

as

rotation

or

compression,

that

you

want

to

apply

to

the

stored

image.

You

specify

each

conversion

option

through

a

parameter

and

an

associated

value.

The

parameters

and

allowed

values

are

listed

in

Table

10

on

page

72.

You

can

request

multiple

changes

to

a

stored

image

by

specifying

multiple

parameter/value

pairs.

In

the

following

example,

a

bitmap

(BMP)

image,

whose

content

is

in

a

server

file,

is

converted

to

GIF

format

when

stored

in

a

database

table.

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2IMAGE(

CURRENT

SERVER,

'/employee/images/ajones.bmp',

'BMP',

/*

source

format

*/

'GIF',

/*

target

format

*/

'',

'Anita''s

picture')

);

In

the

following

example,

the

image

from

the

previous

example

is

converted

to

GIF

format

when

stored

in

a

database

table.

In

addition,

the

image

is

cropped

to

a

width

of

110

pixels

and

a

height

of

150

pixels

when

stored,

and

it

is

compressed

using

LZW

compression.

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2IMAGE(

CURRENT

SERVER,

'/employee/images/ajones.bmp',

'BMP',

/*

source

format

*/

'GIF',

/*

target

format

*/

'-x

110

-y

150

-c

14',

/*

conversion

options

*/

’/employee/images/ajones.gif’,

'Anita''s

picture')

);

Storing

80

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Storing

an

object

with

user-supplied

attributes

When

you

store

an

image,

audio,

or

video

object,

you

are

not

limited

to

formats

that

the

Extenders

understand.

You

can

specify

your

own

format.

Because

the

Extenders

do

not

understand

the

format,

you

must

specify

the

attributes

of

the

source

object.

You

must

also

specify

the

format

of

the

object,

and

for

video

objects

only,

the

compression

format.

Assign

the

attribute

values

to

a

VARCHAR(4096)

FOR

BIT

DATA

variable

in

the

UDF.

For

MIDI

audio

objects

only,

you

must

also

specify

the

tracknames

and

instruments

for

the

MIDI

audio.

If

the

audio

object

is

not

MIDI,

specify

empty

strings

for

the

tracknames

and

instruments.

The

UDF

code

on

the

server

always

expects

data

in

“big

endian

format”.

Big

endian

format

is

a

format

used

by

most

UNIX

and

z/OS

platforms.

If

you

are

storing

an

object

in

“little

endian

format”,

you

need

to

prepare

the

user-supplied

attribute

data

so

that

UDF

code

on

the

server

can

correctly

process

it.

Little

endian

format

is

a

format

typically

used

in

an

Intel®

and

other

microprocessor

platform.

(Even

if

you

are

not

storing

the

object

in

little

endian

format,

it

is

a

good

idea

to

prepare

the

user-supplied

attrubute

data.)

Use

the

DBiPrepareAttrs

API

to

prepare

attributes

for

image

objects.

Use

the

DBaPrepareAttrs

API

to

prepare

attributes

for

audio

objects.

Use

the

DBvPrepareAttrs

API

to

prepare

attributes

for

video

objects.

For

example,

the

following

statements

in

a

C

application

program

store

a

row

that

includes

an

image

in

a

database

table.

The

source

image,

which

is

in

a

server

file,

has

a

user-defined

format,

a

height

of

640

pixels,

and

a

width

of

480

pixels.

Notice

that

the

attributes

are

prepared

before

the

image

is

stored.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvImgattrs[100];

EXEC

SQL

END

DECLARE

SECTION;

DB2IMAGEATTRS

*pimgattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

pimgattr

=

(DB2IMAGEATTRS

*)

hvImgattrs;

pimgattr→width=640;

pimgattr→height=480;

DBiPrepareAttrs(pimgattr);

DBEXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2IMAGEA(

CURRENT

SERVER,

'/employee/images/ajones.bmp',

:hvStorageType,

'Anita''s

picture',

:hvImgattrs,

/*

user-specified

attributes

*/

'FormatI',

'')

);

The

following

statement

in

a

C

application

program

stores

a

row

that

includes

an

audio

clip

in

a

database

table.

The

source

audio

clip,

which

is

in

a

server

file,

has

a

user-defined

format,

a

sampling

rate

of

44.1

kHz,

and

has

two

recorded

channels.

The

audio

clip

is

not

MIDI,

so

empty

strings

are

specified

for

tracknames

and

instruments.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvAudattr[100];

Storing

Chapter

10.

Storing,

retrieving,

and

updating

objects

81

EXEC

SQL

END

DECLARE

SECTION;

MMDBAudioAttrs

*paudiattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

paudioattr=(MMDBAudioAttrs

*)

hvAudattr;

paudioAttr→ulSamplingRate=44100;

paudioAttr→usNumChannels=2;

DBaPrepareAttrs(paudioAttr);

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2AUDIOA(

CURRENT

SERVER,

'/employee/sounds/ajones.aud',

:hvStorageType,

'Anita''s

voice',

:hvAudattr,

/*

user-specified

attributes

*/

'',

/*

no

tracknames

*/

'',

/*

no

instrument

names

*/

'FormatA')

);

Storing

a

thumbnail

(image

and

video

only)

When

you

store

an

image

of

your

own

format,

you

can

also

store

a

thumbnail,

a

miniature-sized

version

of

the

image.

You

control

the

size

and

format

of

the

thumbnail.

When

you

store

an

image

in

a

format

that

the

Image

Extender

recognizes,

it

automatically

generates

and

stores

a

thumbnail

for

the

object.

The

Image

Extender

creates

a

thumbnail

in

GIF

format

of

size

112

x

84

pixels.

When

you

store

a

video

object

of

your

own

format,

you

can

also

store

a

thumbnail

that

symbolizes

the

video

object.

When

you

store

a

video

object

in

a

format

that

the

Video

Extender

recognizes,

it

automatically

stores

a

generic

thumbnail

for

the

object.

The

Video

Extender

creates

a

thumbnail

in

GIF

format

of

size

108

x

78

pixels.

If

you

don’t

want

to

store

a

thumbnail

when

you

store

an

image

or

video

object

with

user-supplied

attributes,

specify

a

null

value

or

empty

string

in

place

of

the

thumbnail.

Generate

the

thumbnail

in

your

program—the

extenders

do

not

provide

APIs

to

generate

thumbnails.

Create

a

structure

in

your

program

for

the

thumbnail

and

specify

the

thumbnail

structure

in

the

UDF.

The

following

statements

in

a

C

application

program

store

a

row

that

includes

a

video

clip

in

a

database

table.

The

source

video

clip,

whose

content

is

in

a

server

file,

has

a

user-defined

format

and

a

compression

format

of

MPEG1.

The

video

content

will

remain

in

the

server

and

be

pointed

to

from

the

table.

A

thumbnail

of

a

representative

video

frame

is

also

stored.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvVidattrs[4000];

char

hvThumbnail[16384];

EXEC

SQL

END

DECLARE

SECTION;

MMDBVideoAttrs

*pvideoAttr;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

Storing

82

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

pvideoAttr=(MMDBVideoAttrs

*)hvVidattrs;

/*

Generate

thumbnail

and

assign

to

thumbnail

variable

*/

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2VIDEOA(

CURRENT

SERVER,

'/employee/videos/ajones.vid',

:hvStorageType,

'Anita''s

video',

:hvVidattrs,

'FormatV',

'MPEG1',

:hvThumbnail)

/*

Thumbnail*/

);

Storing

a

comment

Store

a

comment

with

an

image,

audio,

or

video

object

by

specifying

the

comment

in

the

UDF

request.

A

comment

is

free-form

text

of

data

type

VARCHAR(16384).

If

you

do

not

want

a

comment

stored

when

you

store

an

object,

specify

an

empty

string

in

place

of

the

comment.

For

example,

the

following

statements

in

a

C

application

program

store

a

comment

with

a

video

clip.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2VIDEO(

CURRENT

SERVER,

'/employee/videos/ajones.mpg',

'MPEG1',

:hvStorageType,

'Anita''s

video')

/*

comment

*/

);

The

following

statements

in

a

C

application

program

store

an

image

without

a

comment.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2IMAGE(

CURRENT

SERVER,

'/employee/images/ajones.bmp',

'GIF',

:hvStorageType,

'')

/*

no

comment

*/

);

Storing

Chapter

10.

Storing,

retrieving,

and

updating

objects

83

Retrieving

an

image,

audio,

or

video

object

Use

the

Content

UDF

in

an

SQL

SELECT

statement

to

retrieve

an

image,

audio,

or

video

object

from

a

database

table.

You

can

retrieve

the

object

to

a

client

buffer,

client

file

(workstation

client

only),

or

server

file.

Content

UDF

formats

for

retrieval

The

Content

UDF

is

overloaded,

meaning,

that

it

has

different

formats

depending

on

how

the

UDF

is

used.

The

formats

are

as

follows:

Format

1:

Retrieve

an

object

to

a

client

buffer

or

workstation

client

file:

Content(

handle,

/*

object

handle

*/

);

Format

2:

Retrieve

a

segment

of

an

object

to

a

client

buffer

or

workstation

client

file:

Content(

handle,

/*

object

handle

*/

offset,

/*

offset

where

retrieval

begins

*/

size

/*

number

of

bytes

to

retrieve

*/

);

Format

3:

Retrieve

an

object

to

a

server

file:

Content(

handle,

/*

object

handle

*/

target_file,

/*

server

file

name

*/

overwrite

/*

0=Do

not

overwrite

target

file

if

it

exists

*/

/*

1=Overwrite

target

file

*/

);

In

addition,

the

Content

UDF

includes

the

following

formats

for

image

objects

only:

Format

4:

Retrieve

an

image

to

a

client

buffer

or

workstation

file

with

format

conversion:

Content(

handle,

/*

object

handle

*/

target

format

/*

target

format

*/

);

Format

5:

Retrieve

an

object

to

a

server

file

with

format

conversion:

Content(

handle,

/*

object

handle

*/

target_file,

/*

server

file

name

*/

overwrite,

/*

0=Do

not

overwrite

target

file

if

it

exists

*/

/*

1=Overwrite

target

file

*/

target

format

/*

target

format

*/

);

Format

6:

Retrieve

an

object

to

a

client

buffer

or

workstation

file

with

format

conversion

and

additional

changes:

Content(

handle,

/*

object

handle

*/

target

format,

/*

target

format

*/

conversion_options

/*

conversion

options

*/

);

Retrieving

84

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Format

7:

Retrieve

an

object

to

a

server

file

with

format

conversion

and

additional

changes:

Content(

handle,

/*

object

handle

*/

target_file,

/*

server

file

name

*/

overwrite,

/*

0=Do

not

overwrite

target

file

if

it

exists

*/

/*

1=Overwrite

target

file

*/

target

format,

/*

target

format

*/

conversion_options

/*

conversion

options

*/

);

For

example,

the

following

statement

retrieves

an

image

from

the

employee

table

to

a

file

on

the

server.

(This

corresponds

to

format

3.)

EXEC

SQL

SELECT

CONTENT(

/*

retrieval

UDF

*/

PICTURE,

/*

image

handle

*/

'/employee/images/ajones.bmp',

/*

target

file

*/

1)

/*

overwrite

target

file

*/

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

The

following

statements

in

a

C

application

program

retrieve

an

image

from

the

employee

table

to

a

file

on

the

server.

The

format

of

the

image

is

converted

when

it

is

retrieved.

(This

corresponds

to

format

5.)

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

CONTENT(

/*

retrieval

UDF

*/

PICTURE,

/*

image

handle

*/

'/employee/images/ajones.bmp',

/*

target

file

*/

1,

/*

overwrite

target

file

*/

'GIF')

/*

target

format

*/

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

Retrieving

an

object

to

the

client

You

can

use

the

Content

UDF

to

retrieve

an

image,

audio,

or

video

object

to

a

client

buffer

or

client

file

without

format

conversion.

In

addition,

you

have

the

option

of

having

the

Image

Extender

convert

the

format

of

an

image

when

it

is

retrieved.

Retrieving

an

object

to

a

client

without

format

conversion

Use

a

LOB

locator

to

retrieve

an

image,

audio,

or

video

object

to

a

client

buffer,

or

retrieve

the

LOB.

Use

a

file

reference

variable

to

retrieve

an

image,

audio,

or

video

object

to

a

workstation

client

file.

(For

a

z/OS

client,

you

can

use

a

LOB

locator

or

retrieve

the

LOB

to

a

buffer

and

then

write

the

LOB

to

a

client

file.)

Retrieving

an

image,

audio,

or

video

object

to

a

client

buffer

using

a

host

variable,

or

to

a

client

file

using

a

file

reference

variable

is

appropriate

when

the

content

of

the

object

is

stored

in

a

database

table

as

a

BLOB.

If

the

content

is

in

a

server

file,

it

might

be

more

efficient

to

copy

the

content

from

the

server

file

to

the

client

file.

Specify

the

handle

of

the

object.

Optionally,

you

can

also

specify

the

offset,

starting

at

byte

1,

where

retrieval

is

to

start,

and

the

number

of

bytes

that

you

want

to

retrieve.

The

following

statements

in

a

C

application

program

use

a

LOB

locator

named

audio_loc

to

retrieve

an

audio

clip

into

a

client

buffer.

Retrieving

Chapter

10.

Storing,

retrieving,

and

updating

objects

85

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_LOCATOR

audio_loc;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

CONTENT(

SOUND)

/*

audio

handle

*/

INTO

:audio_loc

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

Retrieving

an

image

to

a

client

with

conversion

Use

a

LOB

locator

to

retrieve

a

stored

image

to

a

client

buffer

with

format

conversion,

or

retrieve

the

LOB.

Use

a

file

reference

variable

to

retrieve

a

stored

image

to

a

workstation

client

file

with

format

conversion.

(For

a

z/OS

client,

you

can

use

a

LOB

locator

or

retrieve

the

LOB

to

a

buffer

and

then

write

the

LOB

to

a

client

file.)

Retrieving

an

image

to

a

client

buffer

using

a

host

variable,

or

to

a

client

file

using

a

file

reference

variable,

is

appropriate

when

the

content

of

the

image

is

stored

in

a

database

table

as

a

BLOB.

If

the

content

is

in

a

server

file,

it

might

be

more

efficient

to

copy

the

content

from

the

server

file

to

the

client

file.

When

you

retrieve

an

image

with

format

conversion,

you

need

to

specify

its

target

format,

that

is,

the

converted

format.

Table

9

on

page

71

identifies

the

format

conversions

that

are

allowed.

You

can

also

specify

conversion

options

that

identify

additional

changes,

such

as

rotation

or

scaling,

to

be

applied

to

the

retrieved

image.

Table

10

on

page

72

lists

the

conversion

options

that

you

can

specify.

For

example,

the

following

statements

in

a

C

application

program

retrieve

an

image

to

a

client

file.

The

source

image

is

in

bitmap

format

and

it

is

stored

in

a

database

table

as

a

BLOB.

The

retrieved

image

is

converted

to

GIF

and

it

is

scaled

to

3

times

its

original

size.

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_FILE

Img_file;

EXEC

SQL

END

DECLARE

SECTION;

strcpy

(Img_file.name,

"/employee/images/ajones.gif");

Img_file.name_length=

strlen(Img_file.name);

Img_file.file_options=

SQL_FILE_CREATE;

EXEC

SQL

SELECT

CONTENT(

PICTURE,

/*

image

handle

*/

'GIF',

/*

target

format

*/

'-s

3.0')

/*

conversion

options

*/

INTO

:Img_file,

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

Retrieving

an

object

to

a

server

file

You

can

use

the

Content

UDF

to

retrieve

an

image,

audio,

or

video

object

to

a

server

file

without

format

conversion.

In

addition,

you

can

use

the

Content

UDF

to

retrieve

an

image

to

a

server

file

with

format

conversion.

When

you

retrieve

an

image,

audio,

or

video

object

to

a

file

on

the

server

without

conversion,

specify

the

object’s

handle,

the

target

file

name,

and

an

overwrite

indicator.

The

overwrite

indicator

tells

the

extender

whether

to

overwrite

the

target

file

with

the

retrieved

data

if

the

target

file

already

exists

on

the

server.

If

the

target

file

does

not

exist,

the

extender

creates

the

target

file

on

the

server.

Retrieving

86

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

If

you

specify

an

overwrite

indicator

value

of

1,

the

extender

overwrites

the

target

file

with

the

retrieved

data.

If

you

specify

an

overwrite

indicator

value

of

0,

the

extender

does

not

overwrite

the

target

file,

thus

the

data

is

not

retrieved.

The

overwrite

indicator

is

ignored

if

the

object

to

be

retrieved

is

stored

in

a

database

table

as

a

BLOB.

The

target

file

will

be

created

or

overwritten

no

matter

what

is

specified

for

the

overwrite

indicator.

When

you

retrieve

an

object

to

a

server

file,

it

returns

the

name

of

the

server

file.

For

example,

the

following

statement

in

a

C

application

program

retrieves

a

video

to

a

file

on

the

server.

The

file

name

of

the

server

file

is

stored

in

the

host

variable

hvVid_fname.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvVid_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

CONTENT(

VIDEO,

/*

video

handle

*/

'/employee/videos/ajones.mpg',

/*

server

file

*/

1)

/*

overwrite

target

file

*/

INTO

:hvVid_fname;

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

Using

the

Content

UDF

to

retrieve

an

object

to

a

server

file

without

conversion

is

appropriate

when

the

object

is

stored

in

a

database

table

as

a

BLOB.

If

the

object

is

stored

in

a

server

file,

it

might

be

more

efficient

to

copy

the

content

of

the

source

file

to

the

target

file.

When

you

retrieve

an

image

to

a

server

file

with

format

conversion,

specify

the

image

handle,

the

target

file

name,

an

overwrite

target

indicator,

and

the

target

format.

Table

9

on

page

71

identifies

what

format

conversions

are

allowed.

You

can

also

choose

to

specify

a

null

value

or

empty

string

for

the

target

format

or

the

string

ASIS.

In

this

case,

the

retrieved

image

will

have

the

same

format

as

the

source.

For

example,

the

following

statements

in

a

C

application

program

retrieve

an

image

to

a

file

on

the

server.

The

source

image

is

in

bitmap

format

and

is

stored

in

a

database

table

as

a

BLOB.

The

retrieved

image

is

converted

to

GIF

format.

The

file

name

of

the

server

file

is

stored

in

the

host

variable

hvImg_fname.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

CONTENT(

PICTURE,

/*

image

handle

*/

'/employee/images/ajones.gif',

/*

target

file

*/

1,

/*

overwrite

target

file

*/

'GIF')

/*

target

format

*/

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

The

server

file

must

be

accessible:

When

you

retrieve

an

object

to

a

server

file,

you

must

specify

the

target

file’s

fully

qualified

name.

Alternatively,

you

must

ensure

that

the

DB2IMAGEEXPORT,

DB2AUDIOEXPORT,

and

DB2VIDEOEXPORT

environment

variables

are

set

to

properly

resolve

an

incomplete

file

name

specification.

Retrieving

Chapter

10.

Storing,

retrieving,

and

updating

objects

87

Retrieving

and

using

attributes

When

you

store

an

image,

audio,

or

video

object

in

a

database,

the

extender

also

stores

the

object’s

attributes

in

the

database.

When

you

update

an

object,

the

extender

updates

the

object’s

attributes

that

are

stored

in

the

database.

These

attributes

are

available

for

you

to

use

in

queries.

The

extenders

create

UDFs

for

each

of

the

attributes

that

they

manage.

As

a

result,

you

can

specify

UDFs

in

SQL

statements

to

access

and

use

object

attributes.

Table

11

lists

the

attributes

that

the

extenders

manage

and

their

UDFs.

It

also

indicates

the

object

types

for

each

attribute.

Some

of

the

attributes,

such

as

an

object’s

format

and

file

name,

are

common

to

all

the

object

types.

These

attributes

are

associated

with

image,

audio,

and

video

objects.

Other

attributes,

such

as

sampling

rate

or

compression

type,

are

specific

to

certain

object

types,

such

as

audio

and

video.

Table

11.

Attributes

managed

by

the

DB2

Extenders.

You

can

access

each

attribute

through

its

UDF.

Attribute

UDF

Image

Audio

Video

Name

of

server

file

in

which

the

object

is

stored

Filename

x

x

x

User

ID

of

person

who

stored

the

object

Importer

x

x

x

Date

and

time

when

the

object

was

stored

ImportTime

x

x

x

Size

of

the

object

in

bytes

Size

x

x

x

User

ID

of

person

who

last

updated

the

object

Updater

x

x

x

Date

and

time

when

the

object

was

last

updated

UpdateTime

x

x

x

Format

of

the

object

(for

example,

GIF

or

MPEG1)

Format

x

x

x

Comments

about

the

object

Comment

x

x

x

Height

of

the

object

(in

pixels)

Height

x

x

Width

of

the

object

(in

pixels)

Width

x

x

Number

of

colors

in

the

object

NumColors

x

Thumbnail-size

image

of

the

object

Thumbnail

x

x

Number

of

bytes

returned

per

sample

in

an

audio,

or

in

an

audio

track

of

a

video

AlignValue

x

x

Number

of

bits

used

to

represent

each

sample

BitsPerSample

x

x

Number

of

recorded

channels

NumChannels

x

x

Duration

(in

seconds)

Duration

x

x

Sampling

rate

(in

samples

per

second)

SamplingRate

x

x

Average

bytes

per

second

transfer

time

BytesPerSec

x

Number

of

audio

track

for

instrument

FindInstrument

x

Track

number

of

named

track

FindTrackName

x

Name

of

recorded

instruments

GetInstruments

x

Using

attributes

88

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Table

11.

Attributes

managed

by

the

DB2

Extenders

(continued).

You

can

access

each

attribute

through

its

UDF.

Attribute

UDF

Image

Audio

Video

Track

numbers

and

names

of

recorded

instruments

GetTrackNames

x

Clock

ticks

per

second

of

audio

TicksPerSec

x

Clock

ticks

per

quarter

note

of

audio

TicksPerQNote

x

Aspect

ratio

AspectRatio

x

Video

compression

format

(such

as

MPEG1)

CompressType

x

Frames

per

second

of

throughput

FrameRate

x

Maximum

throughput

(in

bytes

per

second)

MaxBytesPerSec

x

Number

of

audio

tracks

NumAudioTracks

x

x

Number

of

frames

NumFrames

x

Number

of

video

tracks

NumVideoTracks

x

You

can

use

an

attribute

UDF

in

an

SQL

statement

SELECT

clause

expression

or

WHERE

clause

search

condition.

When

you

request

the

UDF,

you

specify

the

name

of

the

column

in

the

database

table

that

contains

the

object’s

handle.

For

example,

the

following

statement

uses

the

Updater

UDF

in

the

SELECT

clause

of

an

SQL

SELECT

statement

to

retrieve

the

user

ID

of

the

person

who

last

updated

an

image

in

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvUpdatr[30];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

UPDATER(PICTURE)

INTO

:hvUpdatr

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

The

following

statement

uses

the

Filename

UDF

in

the

SELECT

clause

of

a

SELECT

statement

and

the

NumAudioTracks

UDF

in

the

WHERE

clause

to

find

videos

stored

in

the

employee

table

that

have

audio

tracks:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvVid_fname[251];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(VIDEO)

INTO

:hvVid_fname

FROM

EMPLOYEE

WHERE

NUMAUDIOTRACKS(VIDEO)>0;

Retrieving

comments

Use

the

Comment

UDF

to

retrieve

comments

that

are

stored

with

an

image,

audio,

or

video

object.

When

you

retrieve

a

comment

for

an

object,

you

specify

the

column

in

the

database

table

that

contains

the

object’s

handle.

For

example,

the

following

statement

retrieves

a

comment

that

is

stored

with

an

audio

clip

in

the

employee

table.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvComment[16385];

short

indComment;

Using

attributes

Chapter

10.

Storing,

retrieving,

and

updating

objects

89

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

COMMENT(SOUND)

INTO

:hvComment:indComment

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

You

can

also

use

the

Comment

UDF

as

a

predicate

in

the

WHERE

clause

of

an

SQL

query.

For

example,

the

following

statement

retrieves

the

file

name

of

all

images

in

the

employee

table

that

have

been

noted

as

“touched

up”.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(PICTURE)

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE

COMMENT(PICTURE)

LIKE

'%touch%up';

Updating

an

image,

audio,

or

video

object

Use

the

Content

UDF

in

an

SQL

UPDATE

statement

to

update

an

image,

audio,

or

video

object

in

a

database

table.

Use

the

Replace

UDF

in

an

SQL

UPDATE

statement

to

update

an

image,

audio,

or

video

in

a

database

table

and

update

a

comment

that

is

associated

with

the

object.

In

either

case,

the

extender

updates

the

attributes

that

are

associated

with

the

object.

You

can

update

an

object

that

is

stored

in

a

database

table

as

a

BLOB

or

stored

in

a

server

file

(and

pointed

to

from

the

database).

The

source

of

the

update

can

be

in

a

buffer,

client

file

(workstation

client

only),

or

server

file.

Table

9

on

page

71

lists

the

formats

in

which

you

can

update

image,

audio,

and

video

objects.

However,

you

can

also

update

an

object

whose

format

is

unrecognized

by

the

extender.

In

this

case,

the

user

specified

the

object’s

attributes

when

the

object

was

stored.

Use

the

ContentA

UDF

in

an

SQL

UPDATE

statement

to

update

an

image,

audio,

or

video

object

with

user-supplied

attributes

in

a

database.

Use

the

ReplaceA

UDF

in

an

SQL

UPDATE

statement

to

update

an

image,

audio,

or

video

with

user-supplied

attributes

in

a

database

table

and

update

a

comment

associated

with

the

object.

When

you

update

an

object

with

user-specified

attributes,

you

need

to

specify

the

attributes

of

the

object,

its

format,

and

for

video

objects

only,

its

compression

format.

You

can

also

update

the

thumbnail

for

a

stored

image

or

video.

Commit

the

update

operation:

Commit

the

unit

of

work

after

you

update

an

image,

audio,

or

video

object

in

a

database.

This

frees

up

locks

that

the

extenders

hold

so

that

you

can

perform

subsequent

update

operations

on

the

stored

object.

Content

UDF

formats

for

updating

The

Content

UDF

is

overloaded,

meaning,

that

it

has

different

formats

depending

on

how

the

UDF

is

used.

The

formats

are

as

follows:

Format

1:

Update

an

object

from

a

client

buffer

or

workstation

client

file:

Content(

handle,

/*

object

handle

*/

content,

/*

object

content

*/

Retrieving

comments

90

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

source_format,

/*

source

format

*/

target_file

/*

target

file

name

for

storage

in

file

*/

/*

server

or

NULL

for

storage

in

table

as

BLOB

*/

);

Format

2:

Update

an

object

from

a

server

file:

Content(

handle,

/*

object

handle

*/

source_file,

/*

server

file

name

*/

source_format,

/*

source

format

*/

stortype

/*

MMDB_STORAGE_TYPE_EXTERNAL=store

*/

/*

in

file

server

*/

/*

MMDB_STORAGE_TYPE_INTERNAL=store

as

a

BLOB*/

);

For

image

objects

only,

the

Content

UDF

has

the

following

additional

formats:

Format

3:

Update

an

image

from

a

client

buffer

or

workstation

client

file

with

format

conversion:

Content(

handle,

/*

object

handle

*/

content,

/*

object

content

*/

source

format,

/*

source

format

*/

target

format,

/*

target

format

*/

target_file

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

);

Format

4:

Update

an

object

from

a

server

file

with

format

conversion:

Content(

handle,

/*

object

handle

*/

source_file,

/*

server

file

name

*/

source

format,

/*

source

format

*/

target

format,

/*

target

format

*/

target_file

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

);

Format

5:

Update

an

image

from

a

client

buffer

or

workstation

client

file

with

format

conversion

and

additional

changes:

Content(

handle,

/*

object

handle

*/

content,

/*

object

content

*/

source

format,

/*

source

format

*/

target

format,

/*

target

format

*/

conversion_options,

/*

conversion

options

*/

target_file

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

);

Format

6:

Update

an

object

from

a

server

file

with

format

conversion

and

additional

changes:

Content(

handle,

/*

object

handle

*/

source_file,

/*

server

file

name

*/

source

format,

/*

source

format

*/

target

format,

/*

target

format

*/

conversion_options,

/*

conversion

options

*/

target_file

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

);

Updating

Chapter

10.

Storing,

retrieving,

and

updating

objects

91

For

example,

the

following

statements

in

a

C

application

program

update

an

image

in

the

employee

table.

The

source

content

for

the

update

is

in

a

server

file

that

is

named

ajones.bmp.

The

updated

image

is

stored

in

the

employee

table

as

a

BLOB.

(This

corresponds

to

format

2

above.)

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=CONTENT(

PICTURE,

/*image

handle*/

'/employee/newimg/ajones.bmp',

/*source

file

*/

'ASIS',

/*keep

the

image

format*/

'');

/*store

image

in

DB

as

BLOB*/

WHERE

NAME='Anita

Jones';

The

following

statements

in

a

C

application

program

update

the

same

image

as

in

the

previous

example.

However,

here

the

image

is

converted

from

BMP

to

GIF

format

on

update.

(This

corresponds

to

format

4

above.)

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=CONTENT(

PICTURE,

/*image

handle*/

'/employee/newimg/ajones.bmp',

/*source

file

*/

'BMP',

/*source

format*/

'GIF',

/*target

format*/

'');

/*store

image

in

DB

as

BLOB*/

WHERE

NAME='Anita

Jones';

ContentA

UDF

formats

for

updating

The

ContentA

UDFs

are

overloaded,

that

is,

they

have

different

formats

depending

on

how

the

UDFs

are

used.

The

formats

are

as

follows:

Format

1:

Update

an

object

with

user-supplied

attributes

from

a

client

buffer

or

workstation

client

file:

ContentA(

handle,

/*

object

handle

*/

content,

/*

object

content

*/

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

attrs,

/*

user-supplied

attributes

*/

tracknames,

/*

MIDI

track

names

(audio

only)

*/

instruments,

/*

MIDI

instruments

(audio

only)

*/

format,

/*

source

format

*/

compress_type,

/*

compression

format

(video

only

*/

thumbnail

/*

thumbnail

(image

and

video

only)

*/

);

Format

2:

Update

an

object

with

user-supplied

attributes

from

a

server

file:

ContentA(

handle,

/*

object

handle

*/

source_file,

/*

source

file

name

*/

stortype,

/*

MMDB_STORAGE_TYPE_EXTERNAL=store

*/

/*

in

file

server*/

/*

MMDB_STORAGE_TYPE_INTERNAL=store

*/

/*

as

a

BLOB*/

attrs,

/*

user-supplied

attributes

*/

tracknames,

/*

MIDI

track

names

(audio

only)

*/

instruments,

/*

MIDI

instruments

(audio

only)

*/

format

/*

source

format

*/

compress_type

/*

compression

format

(video

only

*/

thumbnail

/*

thumbnail

(image

and

video

only)

*/

);

Updating

92

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

For

example,

the

following

statements

in

a

C

application

program

update

an

image

in

the

employee

table.

The

source

image,

which

is

in

a

server

file,

has

a

user-defined

format,

a

height

of

640

pixels,

and

a

width

of

480

pixels.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvImgattrs[100];

EXEC

SQL

END

DECLARE

SECTION;

DB2IMAGEATTRS

*pimgattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

pimgattr

=

(DB2IMAGEATTRS

*)

hvImgattrs;

pimgattr→width=640;

pimgattr→height=480;

DBiPrepareAttrs(pimgattr);

EXEC

SQL

UPDATE

EMPLOYEE

SET

VIDEO=CONTENTA(

PICTURE,

/*

image

handle

*/

'/employee/newimg/ajones.bmp',

/*

source

file

*/

:hvStorageType,

/*

stortype

*/

:ImgAttrs,

/*

user-supplied

attributes

*/

'FormatI',

/*

source

format

*/

'')

/*

no

thumbnail

*/

WHERE

NAME='Anita

Jones';

Replace

UDF

formats

for

updating

The

Replace

UDF

is

overloaded,

that

is,

it

has

different

formats

depending

on

how

the

UDF

is

used.

The

formats

are

as

follows:

Format

1:

Update

an

object

from

a

client

buffer

or

workstation

client

file

and

update

its

comment:

Replace(

handle,

/*

object

handle

*/

content,

/*

object

content

*/

source_format,

/*

source

format

*/

target_file,

/*

target

file

name

for

storage

in

file

*/

comment

/*

user

comment

*/

);

Format

2:

Update

an

object

from

a

server

file

and

update

its

comment:

Replace(

handle,

/*

object

handle

*/

source_file,

/*

server

file

name

*/

source_format,

/*

source

format

*/

stortype,

/*

MMDB_STORAGE_TYPE_EXTERNAL=store

*/

/*

in

file

server*/

/*

MMDB_STORAGE_TYPE_INTERNAL=store

as

a

BLOB*/

comment

/*

user

comment

*/

);

For

image

objects

only,

the

Replace

UDF

has

the

following

additional

formats:

Format

3:

Update

an

image

from

a

client

buffer

or

workstation

client

file

with

format

conversion

and

update

its

comment:

Replace(

handle,

/*

object

handle

*/

content,

/*

object

content

*/

source_format,

/*

source

format

*/

target_format,

/*

target

format

*/

Updating

Chapter

10.

Storing,

retrieving,

and

updating

objects

93

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

comment

/*

user

comment

*/

);

Format

4:

Update

an

object

from

a

server

file

with

format

conversion

and

update

its

comment:

Replace(

handle,

/*

object

handle

*/

source_file,

/*

server

file

name

*/

source_format,

/*

source

format

*/

target_format,

/*

target

format

*/

target_file,

/*

MMDB_STORAGE_TYPE_EXTERNAL=store

*/

/*

in

file

server

*/

/*

MMDB_STORAGE_TYPE_INTERNAL=store

as

a

BLOB*/

comment

/*

user

comment

*/

);

Format

5:

Update

an

image

from

a

client

buffer

or

workstation

client

file

with

format

conversion

and

additional

changes

and

update

its

comment:

Replace(

handle,

/*

object

handle

*/

content,

/*

object

content

*/

source_format,

/*

source

format

*/

target_format,

/*

target

format

*/

conversion_options,

/*

conversion

options

*/

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

comment

/*

user

comment

*/

);

Format

6:

Update

an

object

from

a

server

file

with

format

conversion

and

additional

changes

and

update

its

comment:

Replace(

handle,

/*

object

handle

*/

source_file,

/*

server

file

name

*/

source_format,

/*

source

format

*/

target_format,

/*

target

format

*/

conversion_options,

/*

conversion

options

*/

target_file,

/*

MMDB_STORAGE_TYPE_EXTERNAL=store

*/

/*

in

file

server

*/

/*

MMDB_STORAGE_TYPE_INTERNAL=store

as

a

BLOB*/

comment

/*

user

comment

*/

);

For

example,

the

following

statements

in

a

C

application

program

update

an

audio

clip

in

the

employee

table

and

update

its

associated

comment.

The

source

content

for

the

update

is

in

a

server

file

that

is

named

ajones.wav.

The

updated

audio

clip

is

stored

in

the

employee

table

as

a

BLOB

without

format

conversion

(the

Audio

Extender

does

not

support

format

conversion).

This

corresponds

to

format

2

above.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

EXEC

SQL

UPDATE

EMPLOYEE

SET

SOUND=REPLACE(

SOUND,

/*audio

handle*/

'/employee/newaud/ajones.wav',

/*source

file

*/

Updating

94

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

'WAV',

/*keep

the

audio

format*/

:hvStorageType,

/*store

audio

in

DB

as

BLOB*/

'Anita''s

new

greeting')

/*user

comment*/

WHERE

NAME=

'Anita

Jones';

In

the

following

example

an

image

and

its

associated

comment

are

updated.

The

source

content

for

the

update

is

in

a

server

file.

The

updated

image

is

stored

in

the

employee

table

as

a

BLOB,

and

is

converted

from

BMP

to

GIF

format

on

update.

(This

corresponds

to

format

4

above.)

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=REPLACE(

PICTURE,

/*image

handle*/

'/employee/newimg/ajones.bmp',

/*source

file

*/

'BMP',

/*source

format*/

'GIF',

/*target

format*/

''

/*store

image

in

DB

as

BLOB*/

'Anita''s

new

picture')

WHERE

NAME='Anita

Jones';

/*

user

comment

*/

ReplaceA

UDF

formats

for

updating

The

ReplaceA

UDFs

are

overloaded,

that

is,

they

have

different

formats

depending

on

how

the

UDFs

are

used.

The

formats

are

as

follows:

Format

1:

Update

an

object

with

user-supplied

attributes

from

a

client

buffer

or

workstation

client

file

and

update

its

comment:

ReplaceA(

handle,

/*

object

handle

*/

content,

/*

object

content

*/

target_file,

/*

target

file

name

for

storage

in

file

server

*/

/*

or

NULL

for

storage

in

table

as

BLOB

*/

comment,

/*

user

comment

*/

attrs,

/*

user-supplied

attributes

*/

tracknames,

/*

MIDI

track

names

(audio

only)

*/

instruments,

/*

MIDI

instruments

(audio

only)

*/

format

/*

source

format

*/

compress_type

/*

compression

format

(video

only

*/

thumbnail

/*

thumbnail

(image

and

video

only)

*/

);

Format

2:

Update

an

object

with

user-supplied

attributes

from

a

server

file

and

update

its

comment:

ReplaceA(

handle,

/*

object

handle

*/

source_file,

/*

source

file

name

*/

stortype,

/*

MMDB_STORAGE_TYPE_EXTERNAL=store

*/

/*

in

file

server*/

/*

MMDB_STORAGE_TYPE_INTERNAL=store

*/

/*

as

a

BLOB*/

comment

/*

user

comment

*/

attrs,

/*

user-supplied

attributes

*/

tracknames,

/*

MIDI

track

names

(audio

only)

*/

instruments,

/*

MIDI

instruments

(audio

only)

*/

format

/*

source

format

*/

compress_type

/*

compression

format

(video

only

*/

thumbnail

/*

thumbnail

(image

and

video

only)

*/

);

For

example,

the

following

statements

in

a

C

application

program

update

a

video

clip

stored

in

a

server

file,

its

thumbnail,

and

its

associated

comment.

Updating

Chapter

10.

Storing,

retrieving,

and

updating

objects

95

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvVidattrs[3500]

char

hvThumbnail[16384]

EXEC

SQL

END

DECLARE

SECTION;

MMDBVideoAttrs

*pvideoAttr;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

pvideoAttr=(MMDBVideoAttrs

*)hvVidattrs;

EXEC

SQL

UPDATE

EMPLOYEE

SET

VIDEO=REPLACEA(

VIDEO,

'/employee/newvid/ajones.mpg',

:hvStorageType,

'Anita''s

new

video')

:hvVidattrs,

'FormatV',

'MPEG1',

:hvThumbnail)

WHERE

NAME='Anita

Jones';

Updating

an

object

from

the

client

Use

a

host

variable

or

a

file

reference

variable

to

update

an

image,

audio,

or

video

object

from

a

client

buffer

or

workstation

client

file.

(If

the

client

file

is

in

a

z/OS

client,

you

can

copy

the

content

of

the

file

to

a

buffer

and

then

transmit

it

to

the

server,

or

you

can

create

a

LOB

locator

and

copy

the

file

to

the

LOB

locator.)

If

the

source

for

the

update

is

in

a

client

file,

use

a

file

reference

variable

to

transmit

its

content.

For

example,

the

following

statements

in

a

C

application

program

define

a

file

reference

variable

named

Audio_file

and

use

it

to

update

an

audio

clip

stored

in

a

database

table

as

a

BLOB.

The

source

for

the

update

is

in

a

client

file.

Notice

that

the

file_options

field

of

the

file

reference

variable

is

set

to

SQL_FILE_READ,

that

is,

for

input.

Also

notice

that

the

file

reference

variable

is

used

as

the

content

argument

to

the

Content

UDF.

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_FILE

Audio_file;

EXEC

SQL

END

DECLARE

SECTION;

strcpy

(Audio_file.name,

"/employee/newsound/ajones.wav");

Audio_file.name_length=

strlen(Audio_file.name);

Audio_file.file_options=

SQL_FILE_READ;

EXEC

SQL

UPDATE

EMPLOYEE

SET

SOUND=CONTENT(

SOUND,

:Audio_file

'WAVE',

'')

WHERE

NAME='Anita

Jones';

If

the

object

is

in

a

client

buffer,

use

a

host

variable

to

transmit

its

content

for

update.

In

the

following

C

application

program

example,

a

host

variable

named

Video_seg

is

used

to

transmit

the

contents

of

a

video

clip

for

update.

The

comment

associated

with

the

video

clip

is

also

updated.

The

video

clip

is

stored

in

a

database

table

as

a

BLOB.

Notice

that

the

host

variable

is

used

as

the

content

argument

to

the

Replace

UDF.

Updating

96

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB

(2M)

Video_seg

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

UPDATE

EMPLOYEE

SET

VIDEO=REPLACE(

VIDEO,

:Video_seg

'MPEG1',

'',

'Anita''s

new

video')

WHERE

NAME='Anita

Jones';

Updating

an

object

from

the

server

When

the

source

content

for

an

image,

audio,

or

video

object

update

is

in

a

server

file,

specify

the

file

path

as

the

content

argument

to

the

UDF.

For

example,

the

following

statement

in

a

C

application

program

updates

an

image

in

a

database.

The

image

content

is

in

a

server

file.

The

database

points

to

the

server

file.

The

source

for

the

update

is

also

in

a

server

file.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=CONTENT(

PICTURE,

'/employee/newimg/ajones.bmp',

'ASIS',

:hvStorageType)

WHERE

NAME='Anita

Jones';

Specify

the

correct

path:

When

you

update

an

object

whose

source

is

in

a

server

file,

you

can

specify

the

file’s

fully

qualified

name

or

a

relative

name.

If

you

specify

a

relative

name,

you

need

to

ensure

that

the

appropriate

environment

variables

in

the

DB2

server

includes

the

correct

path

for

the

file.

For

information

about

setting

these

environment

variables,

see

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

Specifying

database

or

file

storage

for

updates

You

can

update

an

image,

audio,

or

video

object

that

is

stored

in

a

database

table

as

a

BLOB,

or

in

a

server

file

(and

pointed

to

from

the

database).

If

you

update

an

object

from

a

client

buffer

or

client

file

(workstation

client

only),

you

indicate

BLOB

or

server

file

storage

as

a

result

of

what

you

specify

in

the

filename

parameter.

If

you

specify

a

file

name,

it

indicates

that

you

want

to

update

an

object

whose

content

is

in

a

server

file.

If

you

specify

a

null

file

name,

it

indicates

that

you

want

to

update

an

object

that

is

stored

as

a

BLOB

in

a

database

table.

For

example,

the

following

statements

in

a

C

application

program

update

an

image

whose

content

is

in

a

server

file.

The

update

source

is

in

a

client

buffer.

The

image

comment

is

updated,

too.

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB

(2M)

Img_buf

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=REPLACE(

Updating

Chapter

10.

Storing,

retrieving,

and

updating

objects

97

PICTURE,

:Img_buf,

'ASIS',

'/employee/newimg/ajones.bmp',

/*server

file*/

'Anita''s

new

picture')

WHERE

NAME='Anita

Jones';

If

you

update

an

object

from

a

server

file,

specify

MMDB_STORAGE_TYPE_INTERNAL

to

update

an

object

that

is

stored

in

a

database

table

as

a

BLOB.

If

you

want

to

update

an

object

whose

content

is

in

the

server

file,

specify

MMDB_STORAGE_TYPE_EXTERNAL.

For

example,

in

the

following

C

application

program,

an

audio

clip

is

updated.

The

content

of

the

audio

clip

is

in

a

server

file.

The

source

for

the

update

is

also

in

a

server

file.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC

SQL

UPDATE

EMPLOYEE

SET

SOUND=CONTENT(

SOUND,

'/employee/newimg/ajones.wav',

'WAVE',

:hvStorageType)

WHERE

NAME='Anita

Jones';

Identifying

the

format

for

update

When

you

update

an

object,

you

need

to

identify

its

format.

The

Extenders

will

store

the

updating

image,

audio,

or

video

object

in

the

same

format

as

the

source.

For

image

objects

only,

you

have

the

option

of

having

the

Image

Extender

convert

the

format

of

the

updated

image.

If

you

want

to

have

the

image

format

converted,

you

need

to

specify

the

format

of

the

update

source

and

the

format

of

the

target

image.

The

target

image

is

the

updated

image

as

stored.

Identifying

the

format

for

update

without

conversion

Specify

the

format

of

the

source

image,

audio,

or

video

object

when

you

update

an

object

without

format

conversion.

For

example,

the

following

statement

in

a

C

application

program

updates

a

bitmap

(BMP)

image

whose

content

is

in

a

server

file.

The

format

of

the

updated

image

will

not

be

converted.

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=CONTENT(

PICTURE,

'/employee/newimg/ajones.bmp',

'BMP',

/*image

format*/

'')

WHERE

NAME='Anita

Jones';

You

can

also

specify

a

null

value

or

empty

string

as

the

format,

or

for

the

Image

Extender

only,

the

character

string

ASIS.

The

extender

will

then

determine

the

format

by

examining

the

source.

Use

NULL

or

ASIS

for

recognizable

formats:

Specify

a

null

value,

empty

string,

or

ASIS

only

if

the

format

is

recognizable

to

the

extender,

that

is,

if

it

is

one

of

the

formats

listed

for

the

extender

in

Table

9

on

page

71.

Otherwise,

the

extender

cannot

update

the

object.

Updating

98

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Identifying

the

formats

and

conversion

options

for

update

with

format

conversion

Specify

the

format

of

both

the

source

and

target

images

when

you

update

an

image

with

format

conversion.

Table

9

on

page

71

lists

which

format

conversions

are

allowed.

In

addition,

you

can

specify

conversion

options

that

identify

additional

changes,

such

as

rotation

or

compression,

that

you

want

to

apply

to

the

updated

image.

You

specify

each

conversion

option

through

a

parameter

and

an

associated

value.

The

parameters

and

allowed

values

are

listed

in

Table

10

on

page

72.

You

can

request

multiple

changes

to

the

updated

image

by

specifying

multiple

parameter/value

pairs.

In

the

following

example,

an

image

whose

content

is

in

a

server

file

is

updated.

The

source

of

the

update

is

in

bitmap

(BMP)

format.

The

format

will

be

converted

from

BMP

to

GIF

on

update.

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=CONTENT(

PICTURE,

'/employee/newimg/ajones.bmp',

'BMP',

/*source

format*/

'GIF',

/*target

format*/

'')

WHERE

NAME='Anita

Jones';

In

the

following

example,

the

same

image

is

converted

to

GIF

format

when

updated.

In

addition,

the

image

is

rotated

90

degrees

clockwise

when

updated.

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=CONTENT(

PICTURE,

'/employee/newimg/ajones.bmp',

'BMP',

/*source

format*/

'GIF',

/*target

format*/

'-r

1',

/*

conversion

options

*/

'')

WHERE

NAME='Anita

Jones';

Updating

an

object

with

user-supplied

attributes

When

you

update

an

image,

audio,

or

video

object

that

was

stored

with

user-supplied

attributes,

you

must

specify

the

attributes

of

the

updating

content.

Assign

the

attribute

values

in

an

attribute

structure.

The

attribute

structure

must

be

stored

in

the

data

field

of

the

LONG

VARCHAR

FOR

BIT

DATA

variable

in

the

UDF.

You

must

also

specify

the

format

of

the

object,

and

for

video

objects

only,

the

compression

format.

Assign

the

attribute

values

to

a

VARCHAR(4096)

FOR

BIT

DATA

variable

in

the

UDF.

For

MIDI

audio

objects

only,

you

must

also

specify

the

tracknames

and

instruments

for

the

MIDI

audio.

If

the

audio

object

is

not

MIDI,

specify

empty

strings

for

the

tracknames

and

instruments.

The

UDF

code

on

the

server

always

expects

data

in

“big

endian

format”.

Big

endian

format

is

a

format

used

by

most

UNIX

and

z/OS

platforms.

If

you

are

storing

an

object

in

“little

endian

format”,

you

need

to

prepare

the

user-supplied

attribute

data

so

that

UDF

code

on

the

server

can

correctly

process

it.

Little

endian

format

is

a

format

typically

used

in

an

Intel

and

other

microprocessor

platform.

(Even

if

you

are

not

storing

the

object

in

little

endian

format,

it

is

a

good

idea

to

prepare

the

user-supplied

attrubute

data.)

Use

the

DBiPrepareAttrs

API

to

prepare

attributes

for

image

objects.

Use

the

DBaPrepareAttrs

API

to

prepare

attributes

for

audio

objects.

Use

the

DBvPrepareAttrs

API

to

prepare

attributes

for

video

objects.

Updating

Chapter

10.

Storing,

retrieving,

and

updating

objects

99

For

example,

the

following

statements

in

a

C

application

program

update

an

image

whose

content

is

in

a

server

file.

The

image

has

a

user-defined

format,

a

height

of

640

pixels,

and

a

width

of

480

pixels.

Notice

that

the

attributes

are

prepared

before

the

image

is

updated.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvImgAttrs[50];

EXEC

SQL

END

DECLARE

SECTION;

DB2IMAGEATTRS

*pimgattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

pimgattr

=

(DB2IMAGEATTRS

*)

hvImgattrs;

pimgattr→width=640;

pimgattr→height=480;

DBiPrepareAttrs(pimgattr);

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=REPLACEA(

PICTURE,

'/employee/newimg/ajones.bmp',

:hvStorageType,

'Anita''s

new

picture',

:ImgAttrs,

/*user-supplied

attributes*/

'FormatI',

CAST(NULL

as

VARCHAR(16384))

WHERE

NAME='Anita

Jones';

Updating

a

thumbnail

(image

and

video

only)

Use

the

Thumbnail

UDF

to

update

a

thumbnail

stored

for

an

image

or

video

object

(or

add

a

thumbnail

if

none

is

associated

with

the

stored

image

or

video).

When

you

use

the

Thumbnail

UDF,

specify

the

handle

of

the

object

whose

thumbnail

is

being

updated,

and

specify

the

content

of

the

updated

(or

new)

thumbnail.

Generate

the

thumbnail

in

your

program—the

extenders

do

not

provide

APIs

to

generate

thumbnails.

You

control

the

size

and

format

of

the

updating

thumbnail.

Create

a

structure

in

your

program

for

the

thumbnail,

and

specify

the

thumbnail

structure

in

the

UDF.

For

example,

the

following

statements

in

a

C

application

program

update

the

thumbnail

associated

with

a

stored

video

clip.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvThumbnail[16384];

EXEC

SQL

END

DECLARE

SECTION;

/*Create

thumbnail

and

store

in

hvThumbnail*/

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE=THUMBNAIL(

PICTURE,

:hvThumbnail)

WHERE

NAME='Anita

Jones';

You

can

also

update

a

thumbnail

when

you

update

an

image

or

video

object

with

user-supplied

attributes.

In

fact,

if

you

update

an

image

or

video

with

user-supplied

attributes,

you

must

specify

a

thumbnail

as

input.

If

you

do

not

want

to

update

the

thumbnail

when

you

update

the

object,

specify

a

null

value

or

empty

string

in

place

of

the

thumbnail

specification.

Updating

100

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

The

following

statements

in

a

C

application

program

update

a

video

clip

with

user-supplied

attributes,

and

update

a

thumbnail

associated

with

the

video.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvVidattrs[3500]

char

hvThumbnail[16384];

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

MMDBVideoAttrs

*pvideoAttr;

pvideoAttr=(MMDBVideoAttrs

*)hvVidattrs;

/*

Update

video

content

and

thumbnail

*/

EXEC

SQL

UPDATE

EMPLOYEE

SET

VIDEO=REPLACE(

VIDEO,

'/employee/newvid/ajones.mpg',

:hvStorageType,

'Anita''s

new

video',

:hvVidAttrs,

'FormatV',

'MPEG1',

:hvThumbnail)

/*thumbnail*/

WHERE

NAME='Anita

Jones';

Updating

a

comment

You

can

update

a

comment

by

itself,

or

you

can

update

a

comment

when

you

update

its

associated

object.

Use

the

Comment

UDF

to

update

a

comment

by

itself.

Specify

the

content

of

the

updated

comment

as

well

as

the

table

column

that

contains

the

object’s

handle.

Use

a

host

variable

to

transmit

the

content

to

the

server.

For

example,

the

following

statements

declare

a

host

variable

named

hvRemarks,

and

use

it

to

update

an

existing

comment

for

a

stored

video

clip.

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvRemarks

[16385];

EXEC

SQL

END

DECLARE

SECTION;

/*

Get

the

old

comment

*/

EXEC

SQL

SELECT

COMMENT(VIDEO)

INTO

:hvRemarks

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

/*

Update

the

comment

*/

strcpy

(hvRemarks,

"Updated

video");

EXEC

SQL

UPDATE

EMPLOYEE

SET

VIDEO=COMMENT(VIDEO,

:hvRemarks)

WHERE

NAME

=

'Anita

Jones';

Use

the

Replace

UDF

to

update

a

comment

when

you

update

its

associated

object.

For

example,

the

following

statements

update

a

video

clip

that

is

stored

in

a

server

file,

as

well

as

its

associated

comment.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

Updating

Chapter

10.

Storing,

retrieving,

and

updating

objects

101

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

EXEC

SQL

UPDATE

EMPLOYEE

SET

VIDEO=REPLACE(

VIDEO,

'/employee/newvid/ajones.mpg',

'MPEG1',

:hvStorageType,

'Anita''s

new

video')

/*updated

comment*/

WHERE

NAME='Anita

Jones';

Updating

102

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

11.

Displaying

or

playing

an

image,

audio,

or

video

object

This

chapter

describes

how

to

use

the

DB2

Extender

application

programming

interfaces

to

display

or

play

an

image,

audio,

or

video

object

that

is

stored

in

a

database.

The

examples

in

this

chapter

demonstrate

how

to

display

or

play

an

object

from

a

workstation

client.

If

you

want

to

display

or

play

an

object

from

a

z/OS

client,

you

need

to

be

a

z/OS

Open

Edition

services

user.

You

must

also

have

a

browser

available

that

is

capable

of

displaying

or

playing

a

multimedia

object

on

the

client

machine.

Using

the

display

or

play

APIs

You

can

use

extender

APIs

to

display

an

image

or

video

frame

stored

in

a

database.

You

can

display

a

thumbnail-size

version

or

full-size

version

of

an

image

or

video

frame.

You

can

also

use

extender

APIs

to

play

audio

or

video

objects

stored

in

a

database.

Use

the

following

APIs

to

display

or

play

objects:

Table

12.

APIs

that

display

or

play

objects.

Use

this

API

To

DBiBrowse

Display

an

image

or

video

frame

DBaPlay

Play

an

audio

clip

DBvPlay

Play

a

video

clip

or

display

a

video

frame

When

you

request

any

of

these

APIs,

you

need

to

specify:

v

The

name

of

the

display

or

play

program

v

Whether

the

object

to

be

displayed

or

played

is

stored

in

a

database

table

as

a

BLOB,

or

is

in

a

file

pointed

to

from

the

table

v

The

name

of

the

source

file,

or

the

handle

that

is

stored

in

the

database

table

v

Whether

you

want

your

application

program

to

wait

for

the

user

to

close

the

display

or

play

program

before

proceeding

Identifying

a

display

or

play

program

Specify

the

name

of

the

image

browser,

audio

player,

or

video

player

you

want

to

use.

Follow

the

name

with

%s.

The

extender

will

replace

the

%s

with

the

file

that

holds

the

object

content.

You

can

also

specify

a

null

value

instead

of

naming

a

specific

display

or

play

program.

In

this

case,

the

extender

starts

the

default

image

browser,

audio

player,

or

video

player

named

in

the

DB2IMAGEBROWSER,

DB2AUDIOPLAYER,

or

DB2VIDEOPLAYER

environment

variables.

For

more

information

about

how

the

DB2

Extenders

use

environment

variables,

see

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

For

example,

the

following

statement

in

a

C

application

program

starts

the

default

audio

player

identified

in

the

DB2AUDIOPLAYER

environment

variable:

©

Copyright

IBM

Corp.

1998,

2001

103

rc

=

DBaPlay(

NULL,

/*

use

default

audio

player

*/

MMDB_PLAY_FILE,

"/employee/sounds/ajones.wav",

MMDB_PLAY_NO_WAIT

);

The

environment

variable

must

name

a

program:

If

you

request

a

default

display

or

play

program

(by

specifying

a

null

value),

ensure

that

the

appropriate

environment

variable

specifies

a

display

or

play

program.

If

a

program

is

not

specified,

the

API

will

return

an

error

code.

Specifying

BLOB

or

file

content

You

can

display

or

play

an

object

stored

in

a

database

table

as

a

BLOB

or

whose

content

is

stored

in

a

file

(and

pointed

to

from

the

database

table).

If

the

object

is

stored

as

a

BLOB,

specify

MMDB_PLAY_HANDLE.

If

the

object

content

is

stored

in

a

file,

specify

MMDB_PLAY_FILE.

MMDB_PLAY_HANDLE

and

MMDB_PLAY_FILE

are

constants

that

are

defined

by

the

extenders.

For

example,

the

following

statement

in

a

C

application

program

plays

a

video

whose

content

is

in

a

file:

rc

=

DBvPlay(

"explore

%s",

MMDB_PLAY_FILE,

/*

content

in

file

*/

"/employee/videos/ajones.mpg",

MMDB_PLAY_NO_WAIT

);

Display

and

play

programs

typically

accept

input

from

a

file.

If

you

specify

MMDB_PLAY_FILE,

the

extender

will

using

the

value

in

environment

variables

to

resolve

the

file’s

relative

file

name

and

path.

The

extender

then

starts

the

browse

program

and

passes

it

the

file

name.

If

you

specify

MMDB_PLAY_HANDLE,

the

extender

extracts

the

file

name

from

the

handle

(provided

that

the

file

name

is

not

null).

If

the

file

name

in

the

handle

is

null,

the

object

is

stored

as

a

BLOB.

The

extender

will

create

a

temporary

file

in

the

client

and

copy

the

content

of

the

object

from

the

database

table

to

the

client

file.

The

extender

will

then

start

the

program

and

pass

it

the

name

of

the

file

(or

temporary

file)

that

holds

the

content.

For

example,

the

following

statements

in

a

C

application

program

get

the

handle

of

an

image

stored

as

a

BLOB

and

use

the

handle

to

display

the

image:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_hdl[251];

EXEC

SQL

END

DECLARE

SECTION;

rc

=

DBiBrowse(

"ib

%s",

MMDB_PLAY_HANDLE,

/*

content

is

BLOB

*/

hvImg_hdl,

MMDB_PLAY_NO_WAIT

);

The

content

must

be

accessible:

Make

sure

that

the

display

or

play

program

can

access

the

object

content.

If

the

content

is

in

a

server

file,

but

the

program

requires

the

content

on

the

client,

copy

the

file

to

a

client

file

or

use

the

Content

UDF.

If

the

content

is

stored

as

a

BLOB,

the

extender

will

automatically

retrieve

it

to

the

client.

Using

display/play

APIs

104

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Specifying

a

wait

indicator

You

can

specify

whether

you

want

your

application

program

to

wait

for

the

user

to

end

the

display

or

play

program

before

the

application

continues

(that

is,

before

the

DBiBrowse,

DBaPlay,

or

DBvPlay

API

returns

a

code).

If

you

want

your

application

program

to

wait,

specify

MMDB_PLAY_WAIT.

If

you

do

not

want

your

application

program

to

wait,

specify

MMDB_PLAY_NO_WAIT.

MMDB_PLAY_WAIT

and

MMDB_PLAY_NO_WAIT

are

constants

that

are

defined

by

the

extenders.

If

you

specify

MMDB_PLAY_WAIT,

the

display

or

play

program

will

run

in

the

same

thread

or

process

as

your

application

program.

If

you

specify

MMDB_PLAY_NO_WAIT,

the

display

or

play

program

will

run

in

its

own

thread

or

process

independently

of

your

application

program.

For

example,

as

a

result

of

the

following

statement,

the

application

program

will

wait

for

the

user

to

close

the

image

browser

before

the

application

continues:

rc

=

DBiBrowse(

"explore

%s",

MMDB_PLAY_FILE,

"/employee/images/ajones.bmp",

MMDB_PLAY_WAIT

/*

wait

for

browser

to

close

*/

);

Be

careful

if

you

specify

DBxPlay

and

MMDB_PLAY_NO_WAIT:

When

you

issue

DBaPlay

or

DBvPlay,

the

extender

will

create

a

temporary

file

if

any

of

the

following

are

true:

v

The

object

is

stored

as

a

BLOB

v

The

relative

filename

cannot

be

resolved

using

the

values

in

environment

variables

v

The

file

is

not

accessible

on

the

client

machine

The

temporary

file

is

created

in

the

directory

specified

by

the

TMP

environment

variable.

If

you

specify

MMDB_PLAY_WAIT,

the

extender

deletes

the

temporary

file

after

the

object

is

played.

However,

if

you

specify

MMDB_PLAY_NO_WAIT,

the

temporary

file

is

not

deleted.

You

will

have

to

delete

the

temporary

file

yourself.

Displaying

a

thumbnail-size

image

or

video

frame

A

thumbnail

is

a

miniature

version

of

a

stored

image

or

video

frame.

When

you

store

an

image

in

the

database,

the

Image

Extender

stores

a

thumbnail

of

the

image

in

an

attribute

table.

When

you

store

a

video

in

the

database,

the

Video

Extender

stores

in

an

attribute

table

a

generic

thumbnail

that

symbolizes

the

video

object.

By

default,

the

size

of

an

image

thumbnail

automatically

created

by

the

Image

Extender

is

approximately

112

x

84

pixels.

The

size

of

the

generic

video

thumbnail

that

the

Video

Extender

inserts

is

108

x78

pixels.

Both

the

image

thumbnail

and

the

generic

video

thumbnail

are

stored

in

GIF

format.

Depending

on

the

density

of

data

in

the

image

or

video

frame,

this

corresponds

to

approximately

4.5

KB

to

5

KB

of

data.

If

you

store

or

update

an

image

or

video

with

user-supplied

attributes,

you

can

specify

a

thumbnail

of

a

size

and

format

that

you

choose.

Use

the

Thumbnail

UDF

in

an

SQL

SELECT

statement

to

retrieve

a

thumbnail

from

the

database.

Use

a

file

reference

variable

to

transmit

the

thumbnail

to

a

file.

When

you

specify

the

UDF,

you

need

to

specify

the

name

of

the

column

in

the

database

Using

display/play

APIs

Chapter

11.

Displaying

or

playing

an

image,

audio,

or

video

object

105

table

that

contains

the

image

or

video

handle.

Then

use

the

DBiBrowse

API

to

display

the

image

or

video

frame

thumbnail.

For

example,

the

following

statements

retrieve

a

thumbnail

image

and

then

display

it:

long

rc,

outCount;

char

Thumbnail_filename[254];

FILE

*file_handle;

EXEC

SQL

BEGIN

DECLARE

SECTION;

struct

{

short

len

char

data[10000];

}Thumbnail_buffer;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

THUMBNAIL(PICTURE)

INTO

:Thumbnail_buffer

FROM

EMPLOYEE

WHERE

name

=

'Anita

Jones';

strcpy

(Thumbnail_filename,"/tmp/ajones.tmb");

file_handle=fopen(Thumbnail_filename,"wb+");

outCount=fwrite(Thumbnail_buffer.data,

1,

Thumbnail_buffer.len,

file_handle);

fclose(file_handle);

rc

=

DBiBrowse

(

NULL,

/*

use

the

default

display

program

*/

MMDB_PLAY_FILE,

/*

thumbnail

image

in

file

*/

Thumbnail_filename,

/*

thumbnail

image

content

*/

MMDB_PLAY_WAIT);

/*

wait

for

user

to

finish

*/

Displaying

a

full-size

image

or

video

frame

Use

the

DBiBrowse

API

to

display

an

image

that

is

stored

in

a

database

table.

See

“Using

the

display

or

play

APIs”

on

page

103

for

detailed

information

on

using

this

API.

Playing

an

audio

or

video

Use

the

DBaPlay

API

to

play

an

audio

that

is

stored

in

a

database

table.

Use

the

DBvPlay

API

to

play

a

video

that

is

stored

in

a

database

table.

See

“Using

the

display

or

play

APIs”

on

page

103

for

detailed

information

on

using

these

APIs.

Displaying

thumbnails

106

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

12.

Querying

images

by

content

Figure

22

shows

an

application

program

that

allows

users

to

search

for

images

in

a

database

using

a

visual

example

as

search

criteria,

that

is,

an

image

that

demonstrates

a

predominant

color

or

texture

pattern.

With

such

an

application,

users

can

supply

an

image

as

input

to

the

search.

The

application

then

matches

the

color

or

texture

of

the

source

image

against

those

of

the

stored

images,

and

returns

the

images

whose

color

or

texture

most

closely

match

the

input.

This

capability

to

query

images

by

their

visual

features

is

called

Query

by

Image

Content

(QBIC)

5.

This

chapter

describes

how

to

use

APIs

and

UDFs

that

are

provided

with

the

Image

Extender

to

build

applications

like

the

one

just

described.

It

also

describes

how

to

use

commands

and

APIs

that

are

provided

with

the

Image

Extender

to

perform

QBIC

administrative

tasks.

How

to

query

by

image

content

To

query

by

image

content:

1.

Create

a

QBIC

catalog

for

the

images.

2.

Catalog

the

images.

This

means

adding

entries

for

the

images

to

the

catalog

and

storing

values

for

image

features.

See

“QBIC

catalogs”

on

page

16

for

a

description

of

QBIC

catalogs

and

image

features.

3.

Build

a

query.

The

query

identifies

the

features

to

be

used

as

search

criteria,

their

values,

and

their

weights

(that

is,

emphasis

to

be

placed

on

each

feature).

You

can

specify

these

query

attributes

in

a

character

string

that

is

called

a

query

string.

Alternatively,

you

can

create

a

query

object

and

associate

these

attributes

with

the

query

object.

You

can

then

save

the

query

string

and

reuse

it.

4.

Run

the

query.

When

you

run

the

query,

you

specify

a

query

string

as

input,

or

you

identify

a

query

object

for

the

query.

In

either

case,

you

also

identify

the

images

to

be

searched.

In

either

case,

you

can

submit

the

query

from

the

DB2

command

line

or

from

within

a

program.

5. The

Image

Extender

includes

software

that

is

developed

by

the

University

of

California,

Berkeley,

and

its

contributors.

Figure

22.

Query

by

image

content.

The

color

or

texture

of

a

visual

example

is

used

to

search

for

images

stored

in

a

database

table.

©

Copyright

IBM

Corp.

1998,

2001

107

In

response,

the

Image

Extender

computes

the

feature

values

for

the

query.

It

compares

the

value

to

the

feature

values

that

are

stored

in

the

QBIC

catalog

for

the

target

images.

The

Image

Extender

then

computes

a

score

that

indicates

how

similar

the

feature

values

of

each

target

image

are

to

the

source.

You

can

tell

the

Image

Extender

to

return

the

images

whose

feature

values

are

most

similar

to

the

source.

You

can

also

tell

the

Image

Extender

to

return

the

scores

of

one

or

more

images.

Managing

QBIC

catalogs

Before

images

can

be

queried

by

content,

they

must

be

cataloged

in

a

QBIC

catalog.

A

QBIC

catalog

is

a

set

of

administrative

support

tables

that

holds

data

about

the

visual

features

of

images.

The

catalog

also

includes

an

administrative

support

table

that

contains

log

data.

You

create

a

QBIC

catalog

for

each

column

of

images

in

a

user

table

that

you

want

to

make

available

for

querying

by

content.

There

can

be

no

more

than

one

QBIC

catalog

for

each

column

of

images

in

a

user

table,

and

multiple

columns

cannot

share

the

same

QBIC

catalog.

The

Image

Extender

uses

an

administrative

support

table

to

record

the

association

between

user

table

columns

and

QBIC

catalogs.

After

you

create

a

QBIC

catalog,

you

can:

v

Open

the

catalog

for

subsequent

actions

on

it

v

Add

features

to

the

catalog,

this

identifies

the

features

for

which

you

want

the

Image

Extender

to

store

data

v

Remove

features

from

the

catalog

v

Retrieve

information

about

the

catalog,

such

as

the

name

of

the

user

table

and

column

associated

with

the

catalog,

or

the

features

for

which

data

is

stored

in

the

catalog

v

Catalog

images

in

the

catalog

v

Recatalog

images

v

Close

the

catalog

v

Delete

the

catalog

You

can

use

APIs

that

are

provided

by

the

Image

Extender

to

perform

these

tasks,

including

creating

a

QBIC

catalog.

You

can

also

perform

many

of

the

tasks

by

using

the

db2ext

command-line

processor.

Creating

a

QBIC

catalog

Use

the

QbCreateCatalog

API

or

the

CREATE

QBIC

CATALOG

command

to

create

a

QBIC

catalog.

To

create

the

catalog,

you

need

either:

v

SYSADM

authority

v

DBADM

authority

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

A

user

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

the

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table

whose

images

will

be

cataloged.

The

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

In

addition,

the

user

table

and

image

column

must

be

enabled

for

the

Image

Extender

before

you

create

a

QBIC

catalog

for

the

images

in

that

column.

How

to

query

by

content

108

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

When

you

create

a

QBIC

catalog,

you:

v

Name

the

user

table

and

column

that

contain

the

images

to

be

cataloged.

v

Indicate

that

you

will

manually

catalog

images.

Manual

cataloging

means

that

you

explicitly

request

the

Image

Extender

to

catalog

images.

(By

comparison,

the

Image

Extender

for

the

workstation

version

of

the

Image

Extender,

supports

automatic

cataloging.

Automatic

cataloging

means

the

Image

Extender

automatically

catalogs

an

image

after

the

image

is

stored

in

a

user

table.)

See

“Manually

cataloging

a

column

of

images”

on

page

113

for

information

on

how

to

manually

catalog

images.)

v

Specify

the

table

spaces

and

index

options

for

the

QBIC

catalog

tables.

The

specification

has

four

parts:

–

The

name

of

the

table

space

for

the

catalog

tables

that

contain

feature

data.

You

must

specify

this

table

space.

The

table

space

should

be

a

segmented

table

space.

–

For

the

index

created

on

the

catalog

tables,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

This

specification

is

optional.

You

get

defaults

if

you

do

not

specify

this

part.

–

The

name

of

the

table

space

for

the

catalog

log

table.

This

specification

is

optional.

The

table

space

for

the

log

table

can

be

a

simple

table

space

or

a

segmented

table

space.

It

is

recommended

that

you

specify

LOCKSIZE

PAGE

(or

accept

it

as

a

default)

when

you

create

the

table

space

if

any

of

the

following

are

true:

-

Insert

or

update

operations

occur

infrequently

-

Multiple

applications

are

not

inserting,

updating,

or

deleting

to

or

from

the

same

table

at

the

same

time

-

Transactions

are

completed

quickly

If

you

do

not

specify

a

table

space

for

the

log

table,

the

table

space

for

the

feature

data

tables

is

used.

That

table

space

should

be

a

segmented

table

space

with

LOCKSIZE

ROW

specified.

–

For

the

index

created

on

the

log

table,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

This

specification

is

optional.

You

get

defaults

if

you

do

not

specify

this

part.

The

user

table

and

column

must

be

enabled:

The

user

table

and

the

column

must

be

enabled

for

the

Image

Extender

before

you

create

a

QBIC

catalog

for

the

images

in

that

column.

(See

Chapter

6,

“Preparing

data

objects

for

extender

data,”

on

page

41

for

information

on

enabling

user

tables

and

columns

for

the

Image

Extender.)

Using

the

API:

When

you

use

the

QbCreateCatalog

API,

you

indicate

manual

cataloging

by

specifying

a

value

of

0.

In

effect,

this

means

automatic

cataloging

is

turned

off.

For

example,

the

following

statements

create

a

QBIC

catalog

for

the

images

in

the

picture

column

of

the

employee

table.

Notice

the

manual

cataloging

specification

of

0.

A

table

space

is

specified

for

the

feature

data

tables

in

the

catalog.

Because

no

table

space

is

specified

for

the

log

table,

the

table

space

for

the

feature

table

is

used.

Because

no

index

values

are

specified,

defaults

are

used.

SQLINTEGER

autoCatalog=0;

rc=QbCreateCatalog(

Managing

QBIC

catalogs

Chapter

12.

Querying

images

by

content

109

"employee",

"picture",

autoCatalog,

"qbtbspace");

Using

the

command

line:

When

you

issue

the

CREATE

QBIC

CATALOG

command,

you

indicate

manual

cataloging

by

specifying

OFF.

OFF

is

the

default.

You

also

specify

the

table

spaces

for

the

catalog

(and

their

indexes).

For

example,

the

following

command

creates

the

same

QBIC

catalog

as

in

the

API

example:

CREATE

QBIC

CATALOG

employee

picture

off

USING

qbtbspace

Back

up

the

QBIC

catalog:

You

should

periodically

back

up

the

table

spaces

for

the

QBIC

catalog

in

case

you

need

to

recover

the

catalog.

Opening

a

QBIC

catalog

You

need

to

open

a

QBIC

catalog

to

perform

subsequent

actions

that

change

the

catalog.

For

example,

you

need

to

open

a

QBIC

catalog

before

you

add

a

feature

to

the

catalog.

To

open

a

QBIC

catalog,

use

the

QbOpenCatalog

API

call

or

OPEN

QBIC

CATALOG

command.

When

you

open

a

QBIC

catalog,

you:

v

Name

the

user

table

and

image

column

for

the

catalog.

v

Specify

the

mode

in

which

you

want

the

catalog

opened

(this

is

implicit

when

you

use

the

command

OPEN

QBIC

CATALOG).

You

can

open

a

catalog

for

operations

that

read

from

it,

such

as

searching

for

images

by

content.

Or

you

can

open

a

catalog

for

operations

that

update

it,

such

as

adding

a

feature.

You

must

have

SELECT

authority

for

the

user

table

to

open

the

catalog

for

read

operations.

You

must

have

UPDATE

authority

for

the

user

table

to

open

the

catalog

for

update

operations.

Opening

the

catalog

for

operations

that

update

it

locks

the

catalog

tables

in

exclusive

mode.

This

can

occur

immediately

or

when

another

API

is

called.

The

catalog

tables

remain

locked

until

the

unit

of

work

is

committed

or

rolled

back.

What

if

a

catalog

is

already

open?

You

cannot

open

a

catalog

for

update

operations

if

the

catalog

is

open

for

update

in

another

session.

When

you

open

a

QBIC

catalog,

the

Image

Extender

closes

any

QBIC

catalog

that

you

already

opened

in

the

current

session.

Using

the

API:

When

you

use

the

QbOpenCatalog

API,

you

explicitly

specify

the

mode

in

which

you

want

the

catalog

opened.

Specify:

v

The

API

parameter

qbiRead

to

open

the

catalog

for

operations

that

read

from

it.

v

The

API

parameter

qbiUpdate

to

open

the

catalog

for

operations

that

update

it.

QbiRead

and

QbiUpdate

are

constants

that

are

defined

in

the

include

(header)

file

for

QBIC,

dmbqbapi.h.

You

also

need

to

point

to

the

catalog

handle.

The

catalog

handle

has

a

QBIC-specific

data

type

of

QbCatalogHandle.

This

data

type

is

also

defined

in

dmbqbapi.h.

The

Image

Extender

returns

the

catalog

handle

value

as

output

from

the

API.

For

example,

the

following

API

call

opens

a

QBIC

catalog

for

operations

that

read

from

the

catalog:

Managing

QBIC

catalogs

110

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

SQLINTEGER

mode;

QbCatalogHandle

*CatHdl;

mode=qbiRead;

rc=QbOpenCatalog(

"employee",

"picture",

mode,

&CatHdl);

Using

the

command

line:

When

you

issue

the

OPEN

QBIC

CATALOG

command,

the

Image

Extender

attempts

to

open

the

catalog

for

update

operations.

If

the

catalog

is

currently

open

for

update

in

another

session,

the

Image

Extender

opens

the

catalog

for

read

operations.

For

example,

the

following

command

opens

a

QBIC

catalog;

the

Image

Extender

attempts

to

open

it

for

update

operations:

OPEN

QBIC

CATALOG

employee

picture

Close

the

catalog

when

you

finish

QBIC-related

activities:

When

you

open

a

QBIC

catalog,

the

Image

Extender

allocates

resources

to

it

such

as

memory.

Close

the

catalog

when

you

finish

QBIC-related

activities.

This

frees

up

the

allocated

resources.

Adding

a

feature

to

a

QBIC

catalog

Use

the

QbAddFeature

API

or

the

ADD

QBIC

FEATURE

command

to

add

a

feature

to

a

QBIC

catalog.

You

must

add

at

least

one

feature

to

a

QBIC

catalog

before

you

can

catalog

an

image

in

it.

The

QBIC

catalog

must

be

open

for

update

before

you

add

a

feature.

When

you

add

a

feature

to

a

catalog,

specify

the

name

of

the

feature

that

you

want

to

add

(the

feature

names

are

listed

in

Table

13).

Table

13.

QBIC

Feature

Names

Feature

name

Description

QbColorFeatureClass

Average

color

QbColorHistogramFeatureClass

Histogram

color

QbDrawFeatureClass

Postional

color

QbTextureFeatureClass

Texture

You

might

have

to

recatalog

images:

If

you

add

a

feature

to

a

QBIC

catalog,

the

Image

Extender

will

not

automatically

store

data

about

the

new

feature

for

already

cataloged

images.

To

include

data

about

a

new

feature

for

already

cataloged

images,

you

need

to

recatalog

the

images

(see

“Recataloging

images”

on

page

114).

Using

the

API:

When

you

use

the

QbAddFeature

API,

you

need

to

specify

the

handle

of

the

QBIC

catalog

in

addition

to

the

feature

name.

Notice

the

use

of

the

constant

qbiMaxFeatureName

for

the

length

of

the

feature

name.

The

constant

is

defined

in

the

include

(header)

file

for

QBIC,

dmbqbapi.h,

as

the

value

50.

In

the

following

example,

the

QbAddFeature

API

is

used

to

add

the

histogram

color

feature

to

a

QBIC

catalog:

char

featureName[qbiMaxFeatureName];

QbCatalogHandle

CatHdl;

Managing

QBIC

catalogs

Chapter

12.

Querying

images

by

content

111

strcpy(featureName,"QbColorHistogramFeatureClass");

rc=QbAddFeature(

CatHdl,

/*

catalog

handle

*/

featureName);

/*

feature

name

*/

Using

the

command

line:

The

ADD

QBIC

FEATURE

command

acts

on

the

currently

open

catalog.

In

the

following

example,

the

command

is

used

to

add

the

positional

color

feature

to

the

currently

open

catalog:

ADD

QBIC

FEATURE

QbDrawFeatureClass

Removing

a

feature

from

a

QBIC

catalog

Use

the

QbRemoveFeature

API

or

the

REMOVE

QBIC

FEATURE

command

to

remove

a

feature

from

a

QBIC

catalog.

The

Image

Extender

deletes

the

catalog

table

for

the

feature.

As

a

result,

data

for

that

feature

is

not

stored

when

you

catalog

an

image.

The

QBIC

catalog

must

be

open

for

update

before

you

remove

a

feature.

When

you

remove

a

feature

from

a

catalog,

specify

the

name

of

the

feature

that

you

want

to

remove.

Using

the

API:

When

you

use

the

QbRemoveFeature

API,

you

need

to

specify

the

handle

of

the

QBIC

catalog

in

addition

to

the

feature

name.

In

the

following

example,

the

QbRemoveFeature

API

is

used

to

remove

the

histogram

color

feature

from

a

QBIC

catalog:

char

featureName[qbiMaxFeatureName];

QbCatalogHandle

CatHdl;

strcpy(featureName,"QbColorHistogramFeatureClass");

rc=QbRemoveFeature(

CatHdl,

/*

catalog

handle

*/

featureName);

/*

feature

name

*/

Using

the

command

line:

The

REMOVE

QBIC

FEATURE

command

acts

on

the

currently

open

catalog.

In

the

following

example,

the

command

is

used

to

remove

the

positional

color

feature

from

the

currently

open

QBIC

catalog:

REMOVE

QBIC

FEATURE

QbDrawFeatureClass

Retrieving

information

about

a

QBIC

catalog

You

can

retrieve

the

following

information

about

a

QBIC

catalog:

v

The

name

of

the

user

table

and

image

column

associated

with

the

catalog.

v

The

number

of

features

for

which

data

is

stored

in

the

catalog,

and

their

feature

names.

v

The

manual

cataloging

indicator.

Use

the

QbGetCatalogInfo

API

to

retrieve

the

user

table

and

column

names,

the

number

of

features,

manual

cataloging

indicator,

and

table

space

specifications.

Use

the

QbListFeatures

API

to

retrieve

the

feature

names.

Or

use

the

GET

QBIC

CATALOG

INFO

command

to

retrieve

all

the

information.

The

QBIC

catalog

must

be

open

before

you

can

retrieve

information.

Managing

QBIC

catalogs

112

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Using

the

API:

When

you

use

the

QbGetCatalogInfo

API,

you

need

to

specify

the

handle

of

the

QBIC

catalog.

You

also

need

to

point

to

a

structure

in

which

the

Image

Extender

returns

the

catalog

information.

The

catalog

information

structure

is

defined

in

the

include

(header)

file

for

QBIC,

dmbqapi.h,

as

follows:

typedef

struct{

char

tableName[qbiMaxTableName+1]

char

columnName[qbiMaxColumnName+1]

SQLINTEGER

featureCount;

SQLINTEGER

autoCatalog;

}

QbCatalogInfo;

When

you

issue

the

QbListFeatures

API

call,

you

need

to

allocate

a

buffer

to

hold

the

returned

feature

names.

A

blank

character

separates

feature

names

stored

in

the

buffer.

You

also

need

to

specify

the

catalog

handle,

and

the

size

of

the

buffer

for

the

returned

feature

names.

To

estimate

the

needed

buffer

size,

you

can

use

the

feature

count

that

is

returned

by

the

QbGetCatalogInfo

API,

and

multiply

the

count

by

the

longest

feature

name.

You

can

use

the

constant

qbiMaxFeatureName

as

the

size

of

the

longest

feature

name.

The

API

calls

in

the

following

example

retrieve

information

about

a

QBIC

catalog.

Notice

how

the

feature

count

that

is

returned

by

the

QbGetCatalogInfo

API

and

the

qbiMaxFeature

name

constant

is

used

to

calculate

the

buffer

size

for

the

QbListFeatures

API:

long

bufSize;

long

count;

char

*featureNames;

QbCatalogHandle

CatHdl;

QbCatalogInfo

catInfo;

/*

Get

user

table

name,

image

column

name,

feature

count,

*/

rc=QbGetCatalogInfo(

CatHdl,

&catInfo);

/*

List

feature

names

*/

bufSize=catInfo.featureCount*qbiMaxFeatureName;

featureNames=malloc(bufSize);

rc=QbListFeatures(

CatHdl,

bufSize

count,

featureNames);

Using

the

command

line:

The

GET

QBIC

CATALOG

INFO

command

acts

on

the

currently

open

catalog.

In

the

following

example,

the

command

is

used

to

retrieve

information

about

the

currently

open

QBIC

catalog:

GET

QBIC

CATALOG

INFO

Manually

cataloging

a

column

of

images

After

you

create

a

catalog,

you

manually

catalog

images

that

are

stored

in

the

user

table.

When

you

catalog

the

images,

you

catalog

an

entire

column

of

images.

You

cannot

catalog

a

single

image.

Use

the

QbCatalogColumn

API

or

the

CATALOG

QBIC

COLUMN

command

to

manually

catalog

a

column

of

images.

The

Image

Extender

catalogs

only

images

in

Managing

QBIC

catalogs

Chapter

12.

Querying

images

by

content

113

the

column

that

are

newly

inserted,

updated,

or

deleted

after

the

column

was

last

cataloged.

The

Image

Extender

catalogs

those

images

for

all

features

in

the

catalog.

The

QBIC

catalog

must

be

open

for

update

before

you

manually

catalog

a

column

of

images.

Using

the

API:

When

you

use

the

QbCatalogColumn

API,

specify

the

catalog

handle.

The

Image

Extender

uses

the

images

in

the

user

table

column

that

is

associated

with

the

specified

catalog.

For

example,

the

following

API

call

catalogs

the

uncataloged

images

in

a

user

table

column

that

is

associated

with

the

specified

catalog.

The

images

are

cataloged

for

all

the

features

in

the

catalog:

QbCatalogHandle

CatHdl;

rc=QbCatalogColumn(

CatHdl);

/*

catalog

handle

*/

Using

the

command

line:

Use

the

CATALOG

QBIC

COLUMN

command

to

manually

catalog

a

column

of

images.

You

can

also

use

the

command

to

recatalog

images

(see

“Recataloging

images”).

Specify

the

parameters

FOR

and

NEW.

(FOR

and

NEW

are

default

parameters.)

In

the

following

example,

the

command

is

used

to

catalog

the

uncataloged

images

in

the

table

column

that

is

associated

with

the

currently-opened

catalog.

The

images

are

cataloged

for

all

the

features

in

the

catalog:

CATALOG

QBIC

COLUMN

FOR

NEW

Recataloging

images

When

you

catalog

an

image,

the

Image

Extender

analyzes

the

features

of

the

image

that

were

identified

to

the

QBIC

catalog

and

stores

values

for

those

features

in

the

catalog.

When

you

add

a

feature

to

a

QBIC

catalog,

the

Image

Extender

does

not

automatically

analyze

the

new

feature

for

already

cataloged

images.

To

add

values

for

the

new

feature

to

the

catalog,

you

need

to

recatalog

all

the

images.

Use

the

QbReCatalogColumn

API

or

the

CATALOG

QBIC

COLUMN

command

to

recatalog

the

images

in

a

QBIC

catalog.

The

Image

Extender

removes

all

feature

data

currently

in

the

catalog.

It

then

analyzes

the

images

for

all

features,

including

any

new

features,

and

catalogs

the

images.

The

QBIC

catalog

must

be

open

before

you

recatalog

images.

Using

the

API:

When

you

use

the

QbReCatalogColumn

API,

specify

the

catalog

handle.

In

the

following

example,

the

images

in

a

QBIC

catalog

are

reanalyzed:

QbCatalogHandle

CatHdl;

rc=QbReCatalogColumn(

CatHdl);

/*

catalog

handle

*/

Using

the

command

line:

Use

the

CATALOG

QBIC

COLUMN

command

to

recatalog

images.

The

command

acts

on

the

currently

open

catalog.

You

can

also

use

the

command

to

manually

catalog

images

(see

“Manually

cataloging

a

column

of

images”

on

page

113).

When

you

issue

the

command,

specify

the

parameters

FOR

and

ALL.

This

tells

the

Image

Extender

that

you

want

to

recatalog

all

the

images.

Managing

QBIC

catalogs

114

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

In

the

following

example,

the

cataloged

images

in

the

currently-opened

QBIC

catalog

are

recataloged:

CATALOG

QBIC

COLUMN

FOR

ALL

Closing

a

QBIC

catalog

Use

the

QbCloseCatalog

API

or

the

CLOSE

QBIC

CATALOG

command

to

close

a

QBIC

catalog.

The

catalog

must

be

open

before

you

close

it.

Using

the

API:

When

you

issue

the

QbCloseCatalog

API

call,

specify

the

catalog

handle.

For

example:

QbCatalogHandle

CatHdl;

rc=QbCloseCatalog(

CatHdl);

/*

catalog

handle

*/

Using

the

command

line:

The

CLOSE

QBIC

CATALOG

command

acts

on

the

currently

open

catalog.

In

the

following

example,

the

command

is

used

to

close

the

currently

open

QBIC

catalog:

CLOSE

QBIC

CATALOG

Deleting

a

QBIC

catalog

Deleting

a

QBIC

catalog

deletes

all

the

feature

data

in

the

catalog

tables.

As

a

result,

the

associated

images

are

no

longer

available

for

querying

by

content.

To

delete

a

QBIC

catalog,

you

must

have

ALTER

or

CONTROL

authority

for

the

table

associated

with

the

catalog.

The

catalog

must

be

open

before

you

delete

it.

Use

the

QbDeleteCatalog

API

or

DELETE

QBIC

CATALOG

command

to

delete

a

QBIC

catalog.

When

you

delete

a

QBIC

catalog,

name

the

user

table

and

column

associated

with

the

catalog.

Using

the

API:

In

the

following

example,

the

QbDeleteCatalog

API

is

used

to

delete

a

QBIC

catalog:

rc=QbDeleteCatalog(

"employee",

/*

user

table

*/

"picture");

/*

image

column

*/

Using

the

command

line:

The

DELETE

QBIC

CATALOG

command

acts

on

the

currently

open

catalog.

In

the

following

example,

the

command

is

used

to

delete

the

currently

open

QBIC

catalog:

DELETE

QBIC

CATALOG

employee

picture

QBIC

catalog

sample

program

Figure

23

on

page

116

shows

part

of

a

program

coded

in

C

that

creates

a

QBIC

catalog.

The

program

also

catalogs

into

the

QBIC

catalog

a

column

of

images.

You

can

find

the

complete

program

in

the

QBCATDMO.C

file

in

the

SAMPLES

subdirectory.

Before

running

the

complete

program,

you

must

run

the

ENABLE

and

POPULATE

sample

programs

(also

found

in

the

SAMPLES

subdirectory).

For

more

information

about

the

sample

programs,

see

Appendix

B,

“Sample

programs

and

media

files,”

on

page

417.

Note

the

following

points

in

the

program:

�1�Include

the

dmbqbapi

header

file.

�2�Connect

to

the

database.

Managing

QBIC

catalogs

Chapter

12.

Querying

images

by

content

115

�3�Create

the

catalog.

The

catalog

is

created

with

automatic

cataloging

turned

off.

�4�Open

the

catalog

for

update.

�5�Add

the

average

color

feature

to

the

catalog.

�6�Catalog

a

column

of

images.

�7�Close

the

catalog.

#include

<sql.h>

#include

<sqlcli.h>

#include

<sqlcli1.h>

#include

<dmbqbqpi.h>

�1�

#include

<stdio.h>

/**/

/*

Define

the

function

prototypes

*/

/**/

#define

MMDB_ERROR_MDG_TEXT_LEN

1200

void

printError(SQLHSTMT

hstmt);

SQLINTEGER

createCatalog(void);

SQLINTEGER

openCatalog(void);

SQLINTEGER

closeCatalogvoid);

SQLINTEGER

addFeature(void);

SQLINTEGER

getCatalogInfo(void);

SQLINTEGER

listFeatures(void);

SQLINTEGER

catalogImageColumn(void);

QbCatalogHandle

cHdl

=

0;

SQLHENV

henv;

SQLHDBC

hdbc;

SQLRETURN

rc;

char

tableName[]

=

"sobay_catalog";

char

columnName[]

=

"covers";

SQLCHAR

uid[18+1]

=

"";

SQLCHAR

pwd[30+1]

=

"";

SQLCHAR

dbName[SQL_MAX_DSN_LENGTH+1]

=

"";

int

main(int

argc,

char

*argv[])

{

if

(

(

argc

>

4

)

||

(

(

argc

>=2

)

&&

(

strcmp(argv[1],"?")==0

)

)

)

{

printf("Syntax

for

qbcatdmo

\n"

"

qbcatdmo

location_name_or_database

userid

password\n\n");

exit(0);

}

if

(argc>1)

{

strcpy(

(

char*)

dbName,

argv[1]

);

if

(argc

>2)

strcpy(

(

char

*)

uid,

argv[2]

);

if

(argc

>3)

strcpy(

(

char*)

pwd,

argv[3]

);

}

else

{

Figure

23.

QBIC

catalog

sample

program

(Part

1

of

6)

Managing

QBIC

catalogs

116

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

/*----

prompt

for

database

name,

userid,

and

password

----*/

printf("Enter

database

name:\n");

gets((char

*)

dbName);

printf("Enter

userid:\n");

gets((char

*)

uid);

printf("Enter

password:\n");

gets((char

*)

pwd);

/*

set

up

the

SQL

CLI

environment

*/

SQlAllocEnv(&henv);

SQLAllocConnect(henv,

&hdbc);

rc

=

SQLConnect(hdbc,dbName,SQL_NTS,uid,SQL_NTS,pwd,SQL_NTS);

�2�

if

(rc

!=

SQL_SUCCESS)

{

printError(SQL_NULL_HSTMT);

exit(1);

}

rc

=

createCatalog();

rc

=

openCatalog();

if

(

rc

==

MMDB_SUCCESS

)

{

rc

=

addFeature();

rc

=

getCatalogInfo();

rc

=

listFeatures();

rc

=

catalogImageColumn();

}

rc

=

closeCatalog();

SQLDisconnect(hdbc);

SQLFreeConnect(hdbc);

SQLFreeEnv(henv);

return

0

}

Figure

23.

QBIC

catalog

sample

program

(Part

2

of

6)

Managing

QBIC

catalogs

Chapter

12.

Querying

images

by

content

117

/**/

/****

createCatalog()

****/

/****

****/

/**/

SQLINTEGER

createCatalog()

{

SQLINTEGER

rc

=

MMDB_SUCCESS;

SQLINTEGER

autoCatalog

=

0;

char

*

tabespaces

=

NULL;

SQLINTEGER

retLen;

SQLINTEGER

errCode

=

0;

char

errMsg[MMDB_ERROR_MSG_TEXT_LEN+1];

char

dbms_name[20]

=

"";

SMALLINT

dbms_name_sz

=

0;

#define

SERVER_IS_DB2_390(dbn)

(

strcmp(dbn,

"DB2"

)

==0

||

strcmp(

dbn

"DSN06010")

==0)

printf("Creating

QBIC

catalog

...\n");

/---*/

/*

find

out

if

we

are

talking

to

DB2/390

and

if

so

*/

/*

create

at

least

1

tablespace

for

the

qbic

tables

*/

/*--*/

rc

=

SQLGetInfo(

hdbc,

SQL_DBMS_NAME,

SQLPOINTER)

&dbms_name,

sizeof(dmbs_name),

&dmbs_name_sz);

if

(

rc

!=

SQL_SUCCESS

)

printError(

SQL_NULL_HSTMT

);

else

if

(

SERVER_IS_DB2_390(

dbms_name

)

)

{

SQLHSTMT

hstmt

=

SQL_NULL_HSTMT;

char

sql_buffer[

MMDB_ERROR_MSG_TEXT_LEN+1]

=

"";

rc

=

SQLAllocStmt(

hdbc,

&hstmt

);

if

(

rc

!=

SQL_SUCCESS

)

printError(

hstmt

);

else

{

sprintf(

sql_buffer,

"CREATE

TABLESPACE

SAMPQBIC"

);

/*

add

more

if

you

want

*/

rc

=

SQLExecDirect(

hstmt,

(SQLCHAR

*)sql_buffer,

SQL_NTS

);

if

(

rc

!=

SQL_SUCCESS

)

printError(

hstmt

);

else

tablespaces

=

"SAMPQBIC";

/*

set

1

tablespace

for

qbic

tables

*/

SQLFreeStmt(hstmt,

SQL_DROP);

}

}

Figure

23.

QBIC

catalog

sample

program

(Part

3

of

6)

Managing

QBIC

catalogs

118

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

/*-----------------------------*/

/*

now

create

the

qbic

catalog

*/

/*-----------------------------*/

if

(

rc

==

MMDB_SUCCESS

)

{

rc

=

QbCreateCatalog(

�3�

(char

*)

tableName,

(char

*)

columnName,

autoCatalog,

tablespaces

);

if

(

rc

!=

MMDB_SUCCESS

)

{

DBiGetError(&errCode,

errMsg);

printf("Error

code

is

%d

Error

Message

%s",

errCode,

errMsg);

SQLTransact(henv,

hdbc,

SQL_ROLLBACK);

}

else

SQLTransact(henv,

hdbc,

SQL_COMMIT);

}

}

/***/

/****

****/

/****

openCatalog():

****/

/****

****/

/***/

SQLINTEGER

openCatalog()

{

SQLINTEGER

rc

=

MMDB_SUCCESS

SQLINTEGER

errCode

=

0;

char

errMsg[MMDB_ERROR_MSG_TEXT_LEN+1];

SQLINTEGER

mode

=

qbiUpdate;

printf("Opening

QBIC

catalog...\n");

rc=QbOpenCatalog(

�4�

(char

*)

tableName,

(char

*)

columnName,

mode,

&cHdl

);

if

(

rc

!=

MMDB_SUCCESS

)

{

DBiGetError(&errCode,

errMsg);

printf("Error

code

is

%d

Error

Message

%s",

errCode,

errMsg);

SQLTRANSACT(henv,

hdbc,

SQL_ROLLBACK);

}

}

Figure

23.

QBIC

catalog

sample

program

(Part

4

of

6)

Managing

QBIC

catalogs

Chapter

12.

Querying

images

by

content

119

/***/

/****

****/

/****

addFeature()

****/

/****

****/

/***/

SQLINTEGER

addFeature()

{

SQLINTEGER

rc

=

MMDB_SUCCESS;

SQLINTEGER

errCode

=

0;

char

errMsg[MMDB_ERROR_MSG_TEXT_LEN+1];

char

CfeatureName[]

=

"QbColorFeatureClass";

char

DfeatureName[]

=

"QbDrawFeatureClass";

char

CHfeatureName[]

=

"QbColorHistogramFeatureClass";

char

TfeatureName[]

=

"QbTextureFeatureClass";

printf("Adding

Features

Class

...

\n");

if(cHdl)

/*

if

we

have

an

open

catalog,

else

do

nothing

*/

{

printf("

Color

Feature

Class

...

&n");

rc

=

QbAddFeature(

cHdl,

CfeatureName

�5�

);

if(rc!=MMDB_SUCCESS){

DBiGetError(&errCode,

errMsg);

print("Error

code

is

%d

Error

Message

%s\n",errCode,

errMsg);

SQLTransact(henv,

hdbc,

SQL_ROLLBACK);

}

else

SQLTransact(henv,

hdbc,

SQL_COMMIT);

}

rc=16;

return

rc

;

}

/***/

/****

****/

/****

catalogImageColumn()

****/

/****

****/

/***/

SQLINTEGER

catalogImageColumn()

{

SQLINTEGER

rc

=

MMDB_SUCCESS;

SQLINTEGER

errCode

=

0;

char

errMsg[MMDB_ERROR_MSG_TEXT_LEN+1];

printf("Cataloging

image

column.

Please

wait

...\n");

if

(

cHdl

)

/*

if

we

have

an

open

catalog

else

do

nothing

*/

{

SQLRETURN

rc;

Figure

23.

QBIC

catalog

sample

program

(Part

5

of

6)

Managing

QBIC

catalogs

120

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Building

queries

When

you

query

images

by

content,

you

identify

input

for

the

query

and

a

target

set

of

cataloged

images.

The

input

for

the

query

specifies

the

name

of

the

features

to

be

used

in

the

query,

feature

values,

and

feature

weights

(that

is,

emphasis

to

be

placed

on

each

feature).

You

have

two

ways

to

provide

this

input:

v

Specify

a

query

string

in

your

query.

The

query

string

is

a

character

string

that

specifies

the

features,

feature

values,

and

feature

weights

for

the

query.

v

Create

a

query

object

and

refer

to

it

in

your

query.

The

query

object

specifies

features

and

feature

weights.

It

also

identifies

a

data

source

for

each

feature.

The

data

source

provides

the

value

for

each

feature.

rc=QbCatalogColumn(

�6�

if

(

rc

!=

MMDB_SUCCESS

)

{

DBiGetError(&errCode,

errMsg);

printf("Error

code

is

%d

Error

Message

%s\n",errCode,

errMsg);

if(

errCode

!=qbicECcatalogingErrors

)

SQLTransact(henv,

hdbc,

SQL_ROLLBACK);

}

else

SQLTransact(henv,

hdbc,

SQL_COMMIT);

}

else

rc

=

16

;

return

rc

;

}

/***/

/****

****/

/****

closeCatalog()

****/

/****

****/

/***/

SQLINTEGER

closeCatalog()

{

SQLINTEGER

rc

=

MMDB_SUCCESS;

SQLINTEGER

errCode

=

0;

char

errMsg[MMDB_ERROR_MSG_TEXT_LEN+1];

printf("Closing

QBIC

catalog

...\n");

if

(

cHdl

)

/*

if

we

have

an

open

catalog

close

it

else

do

nothing

*/

{

rc=QbCloseCatalog(

�7�

if

(

rc

!=

MMDB_SUCCESS

)

{

DBiGetError(&errCode,

errMsg);

printf("Error

code

is

%d

Error

Message

%s\n",errCode,

errMsg);

SQLTransact(henv,

hdbc,

SQL_ROLLBACK);

}

}

else

rc

=

16

;

return

rc

;

}

/**/

Figure

23.

QBIC

catalog

sample

program

(Part

6

of

6)

Building

queries

Chapter

12.

Querying

images

by

content

121

Specifying

a

query

string

You

can

use

a

query

string

to

identify

the

features,

feature

values,

and

feature

weights

for

your

query.

A

query

string

is

a

character

string

that

has

the

form

feature_name

value,

where

feature_name

is

a

QBIC

feature

name,

and

value

is

a

value

associated

with

the

feature.

You

can

specify

multiple

features

in

a

query.

You

then

specify

a

feature

name-value

pair

for

each

feature,

as

described

in

“Feature

value.”

Each

pair

is

separated

by

the

clause

AND.

When

you

specify

multiple

features

in

a

query,

you

can

also

assign

a

weight

to

one

or

more

of

the

features,

as

described

in

“Feature

weight”

on

page

123.

The

query

string

then

has

the

form

feature_name

value

weight,

where

weight

is

the

weight

assigned

to

the

feature.

The

Image

Extender

provides

an

API

(QbQueryStringSearch)

and

two

UDFs

(QbScoreFromStr

and

QbScoreTBFromStr)

that

use

a

query

string.

When

you

issue

a

query,

you

use

the

appropriate

API

or

UDF

and

specify

the

query

string

as

an

input

parameter.

(See

“Issuing

queries

by

image

content”

on

page

130

for

details.)

Feature

value

Specify

a

feature

value

in

the

query

string

for

each

feature

in

the

query.

When

passing

a

query

inside

a

DB2

command,

certain

file-naming

conventions

must

be

followed

for

the

query

to

function

properly.

You

must

enclose

file

names

that

contain

spaces

or

closing

angle

brackets

(>)

in

double

quotation

marks;

other

file

names

can

optionally

be

enclosed

in

double

quotation

marks.

If

you

use

quotations

marks

surrounding

a

file

name,

each

quotation

mark

must

be

preceded

by

an

escape

character

(\).

If

the

query

is

not

passed

within

a

DB2

command,

then

there

is

no

need

to

include

escape

characters

with

the

quotation

marks.

In

the

following

example,

a

query

string

is

passed

within

a

DB2

command:

db2

"select

image_id

from

table

(mmdbsys.QbScoreTBFromStr

(’texture

file=<server,patterns/ptrn07.gif>’,

’fabric’,

’swatch_img’,

10))

as

T1"

Table

14

lists

the

values

that

you

can

specify

for

each

feature.

Directly

below

each

feature

name

is

a

short

version

that

can

be

used

instead.

Table

14.

Feature

values

that

can

be

specified

in

query

string

Feature

name

Value

averageColor,

average,

or

QbColorFeatureClass

color=<Rvalue,

Gvalue,

Bvalue>

Each

color

value

is

an

integer

from

0

to

255

that

identifies

the

red

value

(Rvalue),

green

value

(Gvalue),

and

blue

value

(Bvalue)

of

the

image.

file=<file_location,

filename>

The

file_location

is

server

for

a

server

file.

The

filename

is

the

complete

file

path

specified

in

the

format

appropriate

for

the

system

in

which

the

file

resides,

or

a

relative

file

name.

DB2

Extenders

resolves

the

relative

file

name

using

environment

variables

(see

“How

environment

variables

are

used

to

resolve

file

names”

on

page

413).

Building

queries

122

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Table

14.

Feature

values

that

can

be

specified

in

query

string

(continued)

Feature

name

Value

histogram,

histogramcolor,

or

QbColorHistogramFeatureClass

histogram=<(hist_value,

Rvalue,

Gvalue,

Bvalue>),

...

Each

histogram

color

value

is

specified

in

a

clause

that

identifies

the

percent

(1

to

100)

of

that

color

in

the

histogram

(hist_value),

and

the

red

value

(Rvalue),

green

value

(Gvalue),

and

blue

value

(Bvalue)

of

that

color.

file=<file_location,

filename>

The

file_location

is

server

for

a

server

file.

The

filename

is

the

complete

file

path

specified

in

the

format

appropriate

for

the

system

in

which

the

file

resides,

or

a

relative

file

name.

DB2

Extenders

resolves

the

relative

file

name

using

environment

variables.

draw,

positional,

or

QbDrawFeatureClass

file=<file_location,

filename>

handle=<image_handle>

The

file_location

is

server

for

a

server

file.

The

filename

is

the

complete

file

path

specified

in

the

format

appropriate

for

the

system

in

which

the

file

resides,

or

a

relative

file

name.

DB2

Extenders

resolves

the

relative

file

name

using

environment

variables.

texture

or

QbTextureFeatureClass

file=<file_location,

filename>

handle=<image_handle>

The

file_location

is

server

for

a

server

file.

The

filename

is

the

complete

file

path

specified

in

the

format

appropriate

for

the

system

in

which

the

file

resides,

or

a

relative

file

name.

DB2

Extenders

resolves

the

relative

file

name

using

environment

variables.

Feature

weight

If

you

specify

multiple

features

in

a

query

string,

you

can

also

specify

a

weight

for

one

or

more

of

the

features.

The

weight

of

a

feature

indicates

the

emphasis

that

the

Image

Extender

places

on

the

feature

when

it

computes

similarity

scores

and

returns

results

for

a

query

by

image

content.

The

higher

the

weight

you

specify

for

a

feature,

the

greater

the

emphasis

on

that

feature

in

the

query.

The

weight

is

a

real

number

greater

than

0.0,

for

example,

2.5

or

10.0.

If

you

do

not

assign

a

weight

in

a

query

string,

the

Image

Extender

will

use

the

default

weight

for

the

feature.

Assigning

a

weight

has

no

meaning

if

that

feature

is

the

only

feature

that

is

specified

in

a

query

string.

(That

feature

will

always

have

full

weight

in

the

query.)

The

weight

for

a

feature

is

relative

to

other

features

that

are

specified

in

the

query.

For

example,

suppose

you

specify

the

average

color

and

texture

features

in

a

query

string,

and

also

specify

a

weight

value

of

2.0

for

average

color.

This

tells

the

Image

Extender

to

give

the

average

color

value

twice

the

emphasis

as

the

texture

value.

Examples

The

following

query

string

specifies

an

average

color

of

red:

averageColor

color=<255,

0,

0>

The

following

query

string

specifies

a

histogram

comprised

of

10%

red,

50%

green,

and

40%

blue:

Building

queries

Chapter

12.

Querying

images

by

content

123

histogram

histogram=<(10,

255,

0,

0),

(50,

0,

255,

0),

(40,

0,

0,

255)>

The

following

query

string

specifies

an

average

color

value

and

a

texture

value.

The

texture

value

is

provided

by

an

image

in

a

server

file.

The

weight

of

the

texture

is

twice

that

of

the

average

color:

averageColor

color=<30,

200,

25>

and

texture

file=<server,

"\patterns\pattern7.gif">

weight=2.0

Using

a

query

object

You

can

use

a

query

object

to

identify

the

features,

feature

values,

and

feature

weights

for

your

query.

You

create

the

query

object

and

add

features

to

it.

Then

you

specify

a

data

source

for

each

feature.

The

data

source

provides

a

value

for

the

feature.

For

example,

a

data

source

might

be

an

image

in

a

file.

If

average

color

is

the

pertinent

feature,

the

average

color

of

the

image

is

associated

with

the

query

object.

If

you

add

multiple

features

to

a

query

object,

you

can

assign

a

weight

to

one

or

more

of

the

features.

After

you

create

a

query

object,

you

can

optionally

name

and

save

it

(see

“Saving

and

reusing

a

query

string”

on

page

128).

However

before

you

create

the

first

named

query

object,

you

need

to

ensure

that

the

job

DMBSETUP

is

properly

edited

and

run.

The

job

creates

an

administrative

support

table

that

the

Image

Extender

uses

to

record

information

about

named

queries.

For

further

information,

see

“Editing

and

running

job

DMBSETUP.”

The

Image

Extender

provides

three

APIs

(QbQuerySearch,

QbQueryStringSearch,

and

QbQueryNameSearch)

and

two

UDFs

(QbScoreFromName

and

QbScoreTBFromName)

that

use

a

query

object.

When

you

issue

a

query,

you

use

the

appropriate

API

or

UDF

and

specify

the

query

object

as

an

input

parameter.

(See

“Issuing

queries

by

image

content”

on

page

130

for

details.)

Editing

and

running

job

DMBSETUP

Provided

with

the

DB2

Extenders

is

a

job

named

DMBSETUP.

A

system

administrator

needs

to

run

the

job

to

initialize

the

DB2

Extenders

after

the

extenders

are

installed.

(Installing

and

initializing

the

DB2

Extenders

is

described

in

Program

Directory

for

IBM

Database

2

Universal

Database

Server

for

OS/390

Volume

1

of

8.)

Within

the

DMBSETUP

job

there

are

SQL

statements

that

create

an

administrative

support

table

for

recording

information

about

named

queries.

The

job

also

includes

SQL

statements

that

create

the

table

space

for

the

table

and

create

an

index

for

the

table.

The

SQL

statements

appear

as

comments,

so

they

have

to

be

uncommented

before

they

are

run.

The

statements

are

as

follows:

CREATE

TABLESPACE

QBICNQTS

IN

MMDBSYS

USING

STOGROUP

SYSDEFLT

PRIQTY

12

SEQTY

12

LOCKSIZE

ROW;

CREATE

TABLE

MMDBSYS.QBICQUERIES(

NAME

CHAR(18)

NOT

NULL,

DESCRIPTION

CHAR(250),

QUERY

VARCHR(1024))

IN

MMDBSYS.QBICNQTS;

CREATE

UNIQUE

INDEX

MMDBSYS.QBICQUERIESX

ON

MMDBSYS.QBICQUERIES(

NAME

);

Do

not

change

the

MMDBSYS

database

specification

in

the

CREATE

TABLESPACE

statement.

Similarly,

do

not

change

the

name

of

the

table

and

the

column

specifications

in

the

CREATE

TABLE

statement,

or

the

table

name

in

the

CREATE

UNIQUE

INDEX

statement.

However

you

can

edit

other

specifications

in

Building

queries

124

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

the

statements

as

appropriate.

After

editing

the

job,

you

need

to

ensure

that

a

system

administrator

runs

it

before

you

create

the

first

named

query

object.

Appropriate

privilege

needs

to

be

granted

on

the

table

that

records

information

about

named

queries.

SELECT

privilege

on

the

table

is

required

to

refer

to

the

name

in

a

query.

INSERT

and

DELETE

privilege

on

the

table

is

required

to

create

and

delete

named

queries.

Creating

a

query

object

Use

the

QbQueryCreate

API

to

create

a

query

object.

In

response,

the

Image

Extender

returns

a

handle

for

the

query

object.

The

handle

has

a

QBIC-specific

data

type

of

QbQueryHandle

that

is

defined

in

the

include

(header)

file

for

QBIC,

dmbqbapi.h.

When

you

use

the

API,

you

need

to

point

to

the

query

object

handle.

You

also

need

to

specify

the

handle

in

APIs

that

perform

other

operations

on

the

query

object,

such

as

adding

a

feature.

For

example,

the

following

API

call

creates

a

query

object:

QbQueryHandle

qHandle;

rc=QbQueryCreate(

&qHandle);

/*

query

object

handle

*/

Adding

a

feature

to

a

query

object

You

identify

the

image

features

that

you

want

the

Image

Extender

to

query

by

adding

the

features

to

a

query

object.

Use

the

QbQueryAddFeature

API

to

add

a

feature

to

a

query

object.

When

you

use

the

API,

specify

the

query

object

handle.

You

also

name

the

feature.

You

can

specify

only

one

feature

in

the

API.

You

must

issue

a

separate

API

call

for

each

feature

that

you

want

to

add

to

a

query

object.

In

the

following

example,

the

QbQueryAddFeature

API

is

used

to

add

the

average

color

feature

to

a

query

object:

char

featureName[qbiMaxFeatureName];

QbQueryHandle

qHandle;

rc=QbQueryAddFeature(

qHandle,

/*

query

object

handle

*/

"QbColorFeatureClass");

/*

feature

name

*/

Specifying

the

data

source

for

a

feature

in

a

query

object

Use

the

QbQuerySetFeatureData

API

to

specify

the

data

source

for

a

feature

in

a

query

object.

The

data

source

can

be

a

cataloged

or

uncataloged

image

in

a

column

of

a

user

table.

In

addition,

you

can

explicitly

specify

data

for

the

average

color

or

histogram

color

feature.

For

example,

you

can

specify

the

red,

green,

and

blue

values

of

an

average

color.

When

you

use

the

API:

v

Specify

the

query

object

handle.

v

Name

the

feature.

v

Point

to

the

QbImageSource

structure

(see

page

126

for

details).

Building

queries

Chapter

12.

Querying

images

by

content

125

Using

data

source

structures:

Various

structures

are

used

to

provide

data

source

information

for

a

query

object.

The

structures

are:

v

QbImageSource

v

QbColor

v

QbHistogramColor

QbImageSource:

The

QbImageSource

structure

identifies

the

type

of

source

for

a

feature

in

a

query

object.

The

structure

is

defined

in

the

include

(header)

file

for

QBIC,

dmbqbapi.h,

as

follows:

typedef

struct{

SQLINTEGER

type;

union

{

char

imageHandle[MMDB_BASE_HANDLE_LEN+1];

QbImageFile

reserved;

QbImageBuffer

reserved;

QbSampleSource

reserved;

QbColor

averageColor;

QbHistogramColor

histogramColor[qbiHistogramCount];

};

}

QbImageSource;

The

type

field

in

the

QbImageSource

structure

indicates

the

type

of

source.

You

can

set

the

value

in

the

field

as

follows:

Table

15.

The

QbImageSource

structure

Value

Meaning

qbiSource_ImageHandle

Source

is

in

a

user

table

column

qbiSource_AverageColor

Source

is

an

average

color

specification

qbiSource_HistogramColor

Source

is

a

histogram

color

specification

These

settings

are

valid

only

for

the

appropriate

feature.

For

example,

qbiSource_AverageColor

is

valid

only

for

the

average

color

feature.

If

you

set

the

type

field

to

qbiSource_ServerFile,

use

clientFile

for

the

name

and

type

of

the

file

on

the

server.

Depending

on

the

type

of

source,

the

Image

Extender

also

examines

other

information

that

you

specify.

This

is

shown

in

Table

16.

Table

16.

What

the

Image

Extender

examines

in

QbImageSource

Source

What

the

Image

Extender

examines

Where

specified

a

user

table

image

handle

image

handle

field

of

QbImageSource

average

color

specification

red,

green,

and

blue

color

values

QbColor

structure

(see

page

126

for

details

about

using

this

structure)

histogram

color

specification

color

values

and

percentages

QbHistogramColor

structure

(see

page

127

for

details

about

using

this

structure)

QbColor:

Use

the

QbColor

structure

to

specify

the

red,

green,

and

blue

values

of

an

average

color

when

the

data

source

is

an

average

color

specification.

The

structure

is

defined

in

the

include

(header)

file

for

QBIC,

dmbqbapi.h,

as

follows:

Building

queries

126

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

typedef

struct{

SQLUSMALLINT

red;

/*0

off

-

65535

(fully

on)

*/

SQLUSMALLINT

green;

/*0

off

-

65535

(fully

on)

*/

SQLUSMALLINT

blue;

/*0

off

-

65535

(fully

on)

*/

}

QbColor;

Set

the

values

in

QbColor

to

indicate

the

amount

of

red,

green,

and

blue

pixels

to

be

factored

in

the

average

value

calculation.

The

values

can

range

from

0

to

65535.

A

value

of

0

means

ignore

the

entry.

QbHistogramColor:

Use

the

QbHistogramColor

structure

to

specify

each

color

component

of

a

histogram

color

specification.

The

full

specification

for

a

histogram

color

is

contained

in

an

array

of

QbHistogramColor

structures.

Each

structure

contains

a

color

value

and

a

percentage.

The

color

value

is

comprised

of

red,

green,

and

blue

pixel

values.

The

percentage

specifies

the

percentage

of

that

color

that

is

required

in

the

target

image.

The

structure

is

defined

in

the

include

(header)

file

for

QBIC,

dmbqbapi.h,

as

follows:

typedef

struct{

QbColor

color;

SQLUSMALLINT

percentage;

/*0

-

100

*/

}

QbHistogramColor;

Set

the

values

in

QbColor

to

indicate

the

amount

of

red,

green,

and

blue

pixels

for

the

color.

The

values

can

range

from

0

to

65535.

Set

the

percentage

to

indicate

the

percentage

of

the

specified

color

that

is

required

in

the

target

image.

The

value

can

range

from

1

to

100.

The

sum

of

the

percentages

for

the

color

components

in

a

histogram

color

must

be

100

or

less.

Examples:

The

API

in

the

following

example

specifies

the

data

source

for

the

histogram

color

feature

in

a

query

object.

The

data

source

is

an

image

in

a

user

table.

char

featureName[qbiMaxFeatureName];

QbQueryHandle

qHandle;

QbImageSource

imgSource;

imgSource.type=qbiSource_ImageHandle;

strcpy(imgSource.imageHandle,handle);

rc=QbQuerySetFeatureData(

qHandle,

/*

query

object

handle

*/

"QbColorHistogramFeatureClass",

/*

feature

name

*/

&imgSource);

/*

feature

data

source

*/

In

the

following

example,

the

data

source

is

an

average

color

specification

of

red:

char

featureName[qbiMaxFeatureName];

QbColor

avgColor;

QbImageSource

imgSource;

imgSource.type=qbSource_AverageColor;

avgColor.red=255;

avgColor.green=0;

avgColor.blue=0;

strcpy(featureName,"QbColorFeatureClass");

rc=QbQuerySetFeatureData(

qHandle,

/*

query

object

handle

*/

featureName,

/*

feature

name

*/

&imgSource);

/*

feature

data

source

*/

Building

queries

Chapter

12.

Querying

images

by

content

127

Setting

the

weight

of

a

feature

in

a

query

object

If

you

have

added

more

than

one

feature

to

a

query

object,

you

can

specify

the

weight

that

one

or

more

features

are

to

be

given

in

a

query.

Use

the

QbQuerySetFeatureWeight

API

to

specify

the

weight

of

a

feature.

The

weight

of

a

feature

indicates

the

emphasis

that

the

Image

Extender

places

on

the

feature

when

it

computes

similarity

scores

and

returns

results

for

a

query

by

image

content.

The

higher

the

weight

you

specify

for

a

feature,

the

greater

the

emphasis

on

that

feature

in

the

query

object.

You

can

specify

a

weight

for

one

or

more

features

in

a

query

object,

although

you

can

specify

a

weight

for

only

one

feature

each

time

you

issue

the

QbQuerySetFeatureWeight

API.

If

you

do

not

assign

a

weight

to

a

feature

in

a

query

object,

the

Image

Extender

will

use

the

default

weight

for

the

feature.

Assigning

a

weight

to

a

feature

has

no

meaning

if

that

feature

is

the

only

feature

in

a

query

object.

(That

feature

will

always

have

full

weight

in

the

query

object.)

When

you

use

the

API:

v

Specify

the

query

object

handle.

v

Specify

the

feature

name.

v

Point

to

the

feature

weight.

You

can

set

the

weight

to

a

real

number

greater

than

0,

for

example,

2.5

or

10.0.

The

higher

the

value

you

specify,

the

greater

the

emphasis

on

that

feature.

The

setting

changes

any

weight

that

is

previously

set

for

the

feature

in

the

query

object.

In

the

following

example,

a

query

object

contains

the

average

color

feature

and

at

least

one

other

feature.

The

QbQuerySetFeatureWeight

API

is

used

to

specify

a

weight

for

the

average

color

feature

in

the

query

object:

char

featureName[qbiMaxFeatureName];

double

weight;

QbQueryObjectHandle

qoHandle;

strcpy(featureName,"QbColorFeatureClass");

weight=5.00;

rc=QbQuerySetFeatureWeight(

qoHandle,

/*

query

object

handle

*/

featureName,

/*

feature

name

*/

&weight);

/*

feature

weight

*/

Saving

and

reusing

a

query

string

Query

objects

are

transient

unless

you

save

them.

They

exist

only

when

the

application

runs.

Saving

a

query

string

allows

you

to

use

that

query

string

again

in

your

program

or

across

program

invocations.

The

Image

Extender

provides

the

QbQueryGetString

API

that

returns

the

query

string

from

a

query

object.

You

can

then

use

that

query

string

as

input

to

the

QbQueryStringSearch

API

or

to

the

QbScoreFromStr

and

QbScoreTBFromStr

UDFs

in

other

queries

by

image

content

(see

“Issuing

queries

by

image

content”

on

page

130).

The

query

string

is

built

when

you

build

the

query

using:

v

QbQueryCreate

v

QbQueryAddFeature

v

QbQuerySetFeatureData

v

QbQuerySetFeatureWeight

Building

queries

128

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

v

QbQueryRemoveFeature

After

you

build

the

query,

you

can

call

QbQueryGetString

to

get

the

string.

You

can

use

this

query

string

in

calls

within

that

program

or

save

it

to

a

file

for

use

in

subsequent

invocations

of

your

application

and

in

other

database

connections.

After

you

are

finished

using

the

query

string

returned

by

QbQueryGetString,

you

must

explicitly

free

the

space.

In

the

following

example,

the

QbQueryGetString

is

used

to

retrieve

the

query

string

from

a

query

object:

SQLRETURN

rc;

char*

qryString;

QbQueryHandle

qHandle;

.....

/*

Here

you

create

and

use

the

query

*/

rc

=

QbQueryGetString(qHandle,

&qryString);

if

(

rc

==

0)

{

...

/*

Use

the

query

string

as

input

here

*/

free((void

*)qryString);

qryString=(char

*)0;

}

Restriction::

When

you

use

a

client

file

to

specify

the

data

source

for

a

feature,

the

query

string

does

not

reflect

the

feature

data.

Retrieving

information

about

a

query

object

You

can

determine

what

features

(if

any)

have

been

added

to

a

query

object.

You

can

also

determine

the

current

weight

of

a

feature.

Table

17.

APIs

that

retrieve

information

about

a

query

object

Use

this

API

To

retrieve

QbQueryGetFeatureCount

The

number

of

features

in

a

query

object

QbQueryListFeatures

The

names

of

the

features

in

a

query

object

When

you

issue

the

QbQueryGetFeatureCount

API,

specify

the

query

object

handle.

You

also

need

to

point

to

a

counter.

The

Image

Extender

returns

the

feature

count

in

the

counter.

In

the

following

example,

the

QbQueryGetFeatureCount

API

is

used

to

determine

the

number

of

features

in

a

query

object:

SQLINTEGER

count;

QbQueryHandle

qHandle;

rc=QbQueryGetFeatureCount(

qHandle,

/*

query

object

handle

*/

&count);

/*

feature

count

*/

When

you

issue

the

QbQueryListFeatures

API

call,

you

need

to

allocate

a

buffer

to

hold

the

returned

feature

name.

You

also

need

to

specify

the

catalog

handle,

and

the

size

of

the

buffer

for

the

returned

feature

name.

In

the

following

example,

the

QbQueryListFeatures

API

is

used

to

retrieve

the

name

of

each

feature

in

a

query

object:

SQLINTEGER

retCount,bufSize;

char*

featureName;

QbQueryHandle

qHandle;

bufSize=qbiMaxFeatureName;

Building

queries

Chapter

12.

Querying

images

by

content

129

featureName=(char*)malloc(bufSize);

rc=QbQueryListFeatures(

qHandle,

/*

query

object

handle

*/

bufSize

/*

size

of

buffer

*/

&retCount,

/*

feature

count

*/

featureName);

/*

buffer

for

feature

names

*/

Removing

a

feature

from

a

query

object

Remove

a

feature

from

a

query

object

with

the

QbQueryRemoveFeature

API.

When

you

use

the

API,

specify

the

query

object

handle

and

name

the

feature.

In

the

following

example,

the

QbQueryRemoveFeature

API

is

used

to

remove

the

histogram

color

feature

from

a

query

object:

char

featureName[qbiMaxFeatureName];

QbQueryHandle

qHandle;

strcpy(featureName,"QbColorHistogramFeatureClass");

rc=QbQueryRemoveFeature(

qHandle,

/*

query

object

handle

*/

featureName);

/*

feature

name

*/

Deleting

a

query

object

Delete

an

unnamed

query

object

with

the

QbQueryDelete

API.

The

Image

Extender

deletes

the

query

from

the

currently

connected

database.

When

you

use

the

QbQueryDelete

API,

specify

the

query

object

handle.

In

the

following

example,

the

QbQueryDelete

API

is

used

to

delete

a

query

object:

QbQueryHandle

qHandle;

rc=QbQueryDelete(

qHandle);

/*

query

object

handle

*/

If

you

have

used

a

named

query,

delete

the

query

object

with

the

QbQueryNameDelete

API.

Issuing

queries

by

image

content

After

you

catalog

images,

you

can

query

one

or

more

of

the

images

by

content.

When

you

query

an

image

by

content,

you

identify

input

for

the

query

and

a

target

set

of

cataloged

images.

You

can

specify

the

input

in

a

query

string

(see

“Specifying

a

query

string”

on

page

122)

or

in

a

query

object

(see

“Using

a

query

object”

on

page

124).

If

you

use

a

query

string,

you

can

submit

the

query

from

the

DB2

command

line

or

from

within

a

program.

If

you

use

a

query

object,

you

submit

the

query

from

within

a

program,

by

referencing

its

handle.

The

Image

Extender

compares

the

feature

values

that

are

specified

in

the

query

to

those

of

the

target

images,

and

computes

a

score

for

each

image.

The

score

indicates

how

similar

the

feature

values

of

the

target

image

are

to

feature

value

that

is

specified

in

the

query.

You

can

retrieve

images

whose

feature

values

are

most

similar

to

the

query.

You

can

also

query

a

single

cataloged

image

and

get

its

score,

or

get

scores

for

all

the

cataloged

images

in

a

table

column.

Building

queries

130

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Querying

images

The

Image

Extender

provides

three

APIs

to

query

the

cataloged

images

in

a

table

column.

The

APIs

differ

only

in

whether

they

require

a

query

string

or

query

object

as

input:

Table

18.

APIs

that

query

cataloged

images

API

Input

QbQueryStringSearch

Query

string

QbQuerySearch

Query

object

handle

QbQueryNameSearch

Query

object

name

In

all

three

APIs,

you

also:

v

Name

the

table

and

column

that

contains

the

images

to

be

searched.

The

images

must

be

cataloged

in

a

QBIC

catalog.

v

Specify

the

maximum

number

of

results

to

be

returned.

v

Point

to

a

structure

that

specifies

the

scope

of

the

query.

Set

the

pointer

to

0,

a

NULL

value,

or

an

empty

string.

This

specifies

that

all

cataloged

images

in

the

table

column

are

searched.

v

Specify

the

constant

qbiArray

to

indicate

that

the

results

are

stored

in

an

array.

The

qbiArray

constant

is

defined

in

the

include

(header)

file

for

QBIC,

dmbqbapi.h.

You

also

point

to

an

array

of

output

structures

to

contain

the

results

of

the

search.

In

response,

the

Image

Extender

returns

in

these

structures

the

handles

of

the

target

images

whose

feature

values

are

most

similar

to

the

feature

value

of

the

query.

It

also

returns

a

score

for

each

image

that

indicates

how

similar

the

feature

value

of

the

image

is

to

the

query.

The

structure

is

defined

in

the

include

(header)

file

for

QBIC,

dmbqbapi.h,

as

follows:

typedef

struct{

char

imageHandle[MMDB_BASE_HANDLE_LEN+1];

SQLDOUBLE

SCORE

}

QbResult;

You

must

allocate

an

array

large

enough

to

hold

the

maximum

number

of

results

you

specify,

and

point

to

the

array

in

the

API.

You

must

also

point

to

a

counter;

the

Image

Extender

sets

the

value

of

the

counter

to

the

number

of

results

it

returns.

In

the

following

example,

the

QbQueryStringSearch

API

is

used

to

query

by

content

the

cataloged

images

in

a

table

column.

Notice

that

the

pointer

to

the

query

scope

is

set

to

a

zero

value.

QbResult

returns[MaxQueryReturns];

SQLINTEGER

maxResults=qbiMaxQueryReturns;

SQLINTEGER

count;

QbQueryHandle

qHandle;

QbResult

results[qbiMaxQueryReturns];

rc=QbQueryStringSearch(

"QbColorFeatureClass

color=<255,

0,

0>"

/*query

string

*/

"employee",

/*

user

table

*/

"picture",

/*

image

column

*/

maxResults,

/*

maximum

number

of

results

*/

0,

/*

query

scope

pointer

*

/

qbiArray,

/*

store

results

in

an

array

*/

&count,

/*

count

of

returned

images

*/

results);

/*

array

of

returned

results

*/

Issuing

QBIC

queries

Chapter

12.

Querying

images

by

content

131

Here

is

a

request

that

uses

the

QbQuerySearch

API.

Notice

that

the

query

object

handle

is

specified

as

input.

QbResult

returns[MaxQueryReturns];

SQLINTEGER

maxResults=qbiMaxQueryReturns;

SQLINTEGER

count;

QbQueryHandle

qHandle;

QbResult

results[qbiMaxQueryReturns];

rc=QbQuerySearch(

qHandle,

/

query

object

handle

*/

"employee",

/*

user

table

*/

"picture",

/*

image

column

*/

maxResults,

/*

maximum

number

of

results

*/

0,

/*

query

scope

pointer

*

/

qbiArray,

/*

store

results

in

an

array

*/

&count,

/*

count

of

returned

images

*/

results);

/*

array

of

returned

results

*/

Retrieving

an

image

score

The

Image

Extender

provides

four

UDFs

that

you

can

use

in

an

SQL

statement

to

retrieve

the

score

of

a

cataloged

image

in

a

table

column.

The

score

is

a

double-precision,

floating

point

value

from

0.0

to

a

very

large

number

approaching

infinity.

The

lower

the

score,

the

closer

the

feature

values

of

the

image

matches

the

feature

values

specified

in

the

query.

A

score

of

0.0

means

that

the

image

is

an

exact

match.

The

UDFs

are:

v

QbScorefromStr

v

QbScoreTBfromStr

v

QbScoreFromName

v

QbScoreTBFromName

Recommendation:

Use

the

QbScoreFromStr

UDF

to

get

the

score

of

a

single

cataloged

image.

Use

the

QbScoreTBFromStr

UDF

to

get

the

score

of

multiple

cataloged

images

in

a

table

column.

Retrieving

the

score

of

a

single

image

Use

the

QbScoreFromStr

UDF

to

get

the

score

of

a

single

cataloged

image

in

a

table

column.

Specify

a

query

string

as

input

to

the

QbScoreFromStr

UDF.

If

you

use

the

QbScoreFromName

UDF,

specify

the

name

of

a

query

object

as

input

to

the

QbScoreFromName

UDF.

With

either

UDF,

you

also

specify

the

name

of

the

table

column

that

contains

the

target

image.

To

use

these

UDFs,

you

need:

v

SELECT

privilege

on

the

MMDBSYS.QBICQUERIES

table

v

SELECT

privilege

on

the

QBIC

Catalog

tables

v

SELECT

privilege

on

administrative

support

tables,

for

any

handles

specified

in

the

query

v

Authority

to

reference

any

files

specified

in

the

query

In

the

following

query,

the

QbScoreFromStr

UDF

is

used

to

find

the

cataloged

images

in

a

table

column

whose

average

color

score

is

very

close

to

red.

Issuing

QBIC

queries

132

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

SELECT

name,

description

decimal

(QbScoreFromStr(swatch_img,

'QbColorFeatureClass

color=<255,

0,

0>'),

/*

query

string

*

10,

5)

AS

score

FROM

fabric

/*

table

column

*/

ORDER

BY

score

Retrieving

the

score

of

multiple

images

Use

the

QbScoreTBFromStr

UDF

to

get

the

score

of

multiple

cataloged

images

in

a

table

column.

You

can

use

the

QbScoreTBFromName

UDF,

if

you

have

a

named

query.

Both

UDFs

return

a

two-column

table

of

image

handles

and

scores;

the

rows

in

the

table

are

in

ascending

order

of

score.

The

name

of

the

handle

column

in

the

result

table

is

IMAGE_ID;

the

name

of

the

score

column

is

SCORE.

To

use

these

UDFs,

you

need:

v

SELECT

privilege

on

the

MMDBSYS.QBICQUERIES

table

v

SELECT

privilege

on

the

QBIC

Catalog

tables

v

SELECT

privilege

on

administrative

support

tables,

for

any

handles

specified

in

the

query

v

Authority

to

reference

any

files

specified

in

the

query

Specify

a

query

string

as

input

to

the

QBScoreTBFromStr

UDF.

Specify

the

name

of

a

query

object

as

input

to

the

QbScoreTBFromName

UDF.

With

either

UDF,

you

also

specify

the

name

of

the

table

and

column

that

contains

the

target

images.

You

can

also

specify

the

maximum

number

of

rows

to

return

in

the

result

table.

If

you

do

not

specify

a

maximum

number

of

results,

the

UDF

will

return

a

row

for

each

cataloged

image

in

the

target

table

column.

In

the

following

query,

the

QbScoreTBFromStr

UDF

is

used

to

find

the

ten

cataloged

images

in

a

table

column

whose

texture

is

closest

to

that

of

an

image

in

a

server

file.

SELECT

name,

description

FROM

fabric

WHERE

CAST

(swatch_img

as

varchar(250))IN

SELECT

CAST

(image_id

as

varchar(25))

FROM

TABLE

(QbScoreTBFromStr

(QbTextureFeatureClass

file=<server,"patterns/ptrn07.gif">'

/*query

string

*/

'fabric',

/*

table

*/

'swatch_img',

/*

table

column

*/

10))

/*

maximum

number

of

results

*/

AS

T1));

QBIC

query

sample

program

Figure

24

on

page

135

shows

part

of

a

program

coded

in

C

that

builds

and

runs

a

QBIC

query.

The

code

in

the

figure

queries

images

by

average

color.

It

prompts

the

user

to

enter

the

name

of

a

color

or

image

file.

The

user

can

also

use

an

image

that

is

returned

by

a

query

as

an

example

image

for

a

subsequent

query.

The

program

then

uses

the

named

color

or

the

color

of

the

image

as

the

average

color

to

query

a

column

of

images.

You

can

find

the

complete

program

in

the

QBICDEMO.C

file

in

the

SAMPLES

subdirectory.

The

complete

program

can

be

used

to

query

images

by

histogram

color

or

positional

color

as

well

as

by

average

color.

To

run

the

complete

program,

you

must

run

the

ENABLE,

POPULATE,

and

QBCATDMO

sample

programs

(also

in

the

SAMPLES

subdirectory).

For

more

information

about

the

sample

programs,

see

Appendix

B,

“Sample

programs

and

media

files,”

on

page

417.

Issuing

QBIC

queries

Chapter

12.

Querying

images

by

content

133

Note

the

following

points

in

Figure

24

on

page

135:

�1�Include

the

dmbqbapi

header

file.

�2�Prompt

the

user

for

database

information.

�3�Connect

to

the

database.

�4�Create

a

query

object.

�5�Add

a

feature

to

the

query

object.

�6�Prompt

the

user

for

the

type

of

input

(color

name,

image

file,

or

previously

retrieved

image).

�7�Specify

the

data

source

for

the

feature.

The

data

source

is

an

explicit

specification

for

average

color.

�8�Issue

the

query.

The

Image

Extender

searches

the

entire

column

of

images.

It

also

specifies

10

as

the

maximum

number

of

images

to

be

returned.

�9�Display

the

next

image

in

the

set

of

returned

images.

For

further

information

on

displaying

images,

see

“Displaying

a

full-size

image

or

video

frame”

on

page

106.

�10�Delete

the

query

object.

The

SAMPLES

subdirectory

includes

another

program

that

demonstrates

how

to

build

and

use

a

QBIC

query.

The

program,

QbicQry.java,

shows

you

how

to

graphically

specify

the

search

criteria

for

a

QBIC

query.

For

example,

the

program

presents

a

color

selector

to

choose

average

color.

The

program

converts

the

selection

to

a

query

string.

Issuing

QBIC

queries

134

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

#include

<sql.h>

#include

<sqlcli.h>

#include

<sqlcli1.h>

#include

<dmbqbqpi.h>

�1�

#include

<stdio.h>

#include

<string.h>

#ifdef

DMB_MVS

#include

<stdlib.h>

#else

#include

<malloc.h>

#endif

#include

<color.h>

#include

<ctype.h>

#define

MaxQueryReturns

10

#define

MaxDatabaseNameLength

SQL_SH_IDENT

#define

MaxUserIdLength

SQL_SH_IDENT

#define

MaxPasswordLength

SQL_SH_IDENT

#define

MaxTableNameLength

SQL_LG_IDENT

#define

MaxColumnNameLength

SQL_LG_IDENT

static

char

databaseName[MaxDatabaseNameLength+1]

=

"";

static

char

userid[MaxUserIdLength+1]

=

"";

static

char

password[MaxPasswordLength+1]

=

"";

static

char

tableName[MaxTableNameLength+1];

static

char

columnName[MaxColumnNameLength+1];

static

char

line[4000];

static

QbResult

results[MaxQueryReturns];

static

long

currentImage

=

-1;

static

long

imageCount

=

0;

static

char*

tableName;

static

char*

columnName;

static

QbQueryHandle

averageHandle

=

0;

static

QbQueryHandle

histogramHandle

=

0;

static

QbQueryHandle

drawHandle

=

0;

static

QbQueryHandle

lastHandle

=

0;

static

SQLHENV

henv;

static

SQLHDBC

hdbc;

static

SQLHSTMT

hstmt;

static

SQLRETURN

rc;

static

char*

listQueries

=

"SELECT

NAME,DESCRIPTION

FROM

MMDBSYS.QBICQUERIES

ORDER

BY

NAME";

static

char*

menu[]

=

{

Figure

24.

QBIC

query

sample

program

(Part

1

of

7)

Issuing

QBIC

queries

Chapter

12.

Querying

images

by

content

135

/*

12345678901234567890123456789012345678901234567890123456789012345678901234567890

*/

"",

"+---+",

"|

AVERAGE

COLOR

colorname

|",

"|

AVERAGE

FILE

filename

format

|",

"|

AVERAGE

LAST

|",

"|

HISTOGRAM

COLOR

number

colorname

[

number

colorname

...

]

|",

"|

HISTOGRAM

FILE

filename

format

|",

"|

HISTOGRAM

LAST

|",

"|

|",

"|

Press

Enter

to

display

the

next

image

in

the

series

|",

"+---+",

"",

0

};

static

char*

help[]

=

{

"",

"AVERAGE

Execute

an

average

color

query",

"

COLOR

Specifies

the

color

to

query

for",

"

FILE

Specifies

the

file

to

compute

the

average

color

from",

"

LAST

Specifies

the

last

displayed

image

be

used

to

compute

the

color",

"

NEXT

Displays

the

next

image

from

the

current

query

or

nothing

if",

"",

"All

of

the

commands

may

be

abbreviated

to

their

first

letter

except

string

&

help.",

"",

">>pause<<",

0

};

Figure

24.

QBIC

query

sample

program

(Part

2

of

7)

Issuing

QBIC

queries

136

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

/**/

/*

doBrowse()

*/

/*

*/

/*

*/

/*

*/

/**/

static

void

doBrowse(char*

handle)

{

static

char

msg[1000];

SQLINTEGER

sqlcode;

int

ret;

ret

=

DBiBrowse(0,

MMDB_PLAY_HANDLE,

handle,

MMDB_PLAY_NO_WAIT);

�9�

if

(ret

==

-818)

{

printf("Database

not

correctly

bound

to

the

image

extender

browser.\n");

}

else

if

(ret

!=

0)

{

DBiGetError(&sqlcode,

msg);

printf("Error

from

DBiBrowse():\n");

printf("\tReturn

code:

%d\n",

ret);

printf("\tSqlcode:

%05.5d\n",

sqlcode);

printf("\tMessage:

’%s’\n",

msg);

}

}

/**/

/*

doAverage()

*/

/*

*/

/*

*/

/*

*/

/**/

static

void

doAverage(void)

{

QbQueryHandle

qohandle

=

0;

QbImageSource

is;

char*

type;

char*

arg1;

char*

arg2;

type

=

nextWord(0);

if

(abbrev(type,

"color",

1))

{

is.type

=

qbiSource_AverageColor;

arg1

=

nextWord(0);

if

(arg1

==

0)

{

printf("AVERAGE

COLOR

command

requires

a

colorname

argument.\n");

return;

}

if

(getColor(arg1,

&is.averageColor)

==

0)

{

printf("The

colorname

entered

was

not

recognized.\n");

return;

}

Figure

24.

QBIC

query

sample

program

(Part

3

of

7)

Issuing

QBIC

queries

Chapter

12.

Querying

images

by

content

137

}

else

if

(abbrev(type,

"file",

1))

{

is.type

=

qbiSource_ClientFile;

arg1

=

nextWord(0);

if

(arg1

==

0)

{

printf("AVERAGE

FILE

command

requires

a

filename

argument.\n");

return;

}

arg2

=

nextWord(0);

if

(arg2

==

0)

{

printf("AVERAGE

FILE

command

requires

a

file

format

argument.\n");

return;

}

strcpy(is.clientFile.fileName,

arg1);

strcpy(is.clientFile.format,

arg2);

}

else

if

(abbrev(type,

"last",

1))

{

is.type

=

qbiSource_ImageHandle;

if

(0

<=

currentImage

&&

currentImage

<

imageCount)

strcpy(is.imageHandle,

results[currentImage].imageHandle);

else

{

printf("No

last

image

for

AVERAGE

LAST

command\n");

return;

}

}

else

{

printf("AVERAGE

command

only

supports

COLOR,

FILE,

and

LAST

types.\n");

return;

}

_QbQuerySetFeatureData(averageHandle,

"QbColorFeatureClass",

&is);

�7�

_QbQuerySearch(averageHandle,

tableName,

columnName,

MaxQueryReturns,

0,

0,

&imageCount,

results);

�8�

lastHandle

=

averageHandle;

currentImage

=

-1;

}

Figure

24.

QBIC

query

sample

program

(Part

4

of

7)

Issuing

QBIC

queries

138

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

/**/

/*

commandLoop()

*/

/*

*/

/*

*/

/*

*/

/**/

void

commandLoop(void)

{

int

done

=

0;

while

(!done)

{

�6�

displayText(menu);

printf("%d",

currentImage

+

1);

if

(0

<=

currentImage

&&

currentImage

<

imageCount)

printf("

%8.6f",

results[currentImage].score);

printf(">

");

fflush(stdout);

gets(line);

done

=

processCommand(line);

}

}

Figure

24.

QBIC

query

sample

program

(Part

5

of

7)

Issuing

QBIC

queries

Chapter

12.

Querying

images

by

content

139

/**/

/*

main()

*/

/*

*/

/*

*/

/*

*/

/**/

int

main(int

argc,

char

*argv[])

{

char*

inst;

int

i;

#if

defined(DMB_HP)

_main();

#endif

if

(

(

argc

>

4

)

||

(

(

argc

>=2

)

&&

(

strcmp(argv[1],"?")==

0

)

)

)

{

printf(

"Syntax

for

qbicdemo

\n"

"

qbicdemo

location_name_or_database

userid

password\n\n"

);

exit(0);

}

if

(argc

>

1)

{

strcpy(

(char

*)

databaseName,

argv[1]

);

if

(argc

>

2)

strcpy(

(char

*)

userid,

argv[2]

);

if

(argc

>

3)

strcpy(

(char

*)

password,

argv[3]

);

}

else

{

/*----

prompt

for

database

name,

userid,

and

password

----*/

printf("Enter

database

name:\n");

�2�

gets((char

*)

databaseName);

printf("Enter

userid:\n");

gets((char

*)

userid);

printf("Enter

password:\n");

gets((char

*)

password);

}

printf("\n");

if

(SQLAllocEnv(&henv)

!=

SQL_SUCCESS)

sqlError(SQL_NULL_HSTMT);

if

(SQLAllocConnect(henv,

&hdbc)

!=

SQL_SUCCESS)

sqlError(SQL_NULL_HSTMT);

if

(SQLConnect(hdbc,

�3�

(SQLCHAR*)databaseName,

SQL_NTS,

(SQLCHAR*)userid,

SQL_NTS,

(SQLCHAR*)password,

SQL_NTS)

!=

SQL_SUCCESS)

sqlError(SQL_NULL_HSTMT);

Figure

24.

QBIC

query

sample

program

(Part

6

of

7)

Issuing

QBIC

queries

140

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

printf("Initializing

.

.

.\n");

tableName

=

"SOBAY_CATALOG";

columnName

=

"COVERS";

printf("Create

query

object

...\n");

_QbQueryCreate(&averageHandle);

printf("Adding

’Average

Color’

feature

to

Query

object

...\n");

_QbQueryAddFeature(averageHandle,

"QbColorFeatureClass");

printf("Create

query

object

...\n");

_QbQueryCreate(&histogramHandle);

printf("Adding

’Histogram

Color’

feature

to

Query

object

...\n");

_QbQueryAddFeature(histogramHandle,

"QbColorHistogramFeatureClass");

printf("Create

query

object

...\n");

_QbQueryCreate(&drawHandle);

�4�

printf("Adding

’Draw’

feature

to

Query

object

...\n");

_QbQueryAddFeature(drawHandle,

"QbDrawFeatureClass");

�5�

printf("Starting

query

commands

...\n");

commandLoop();

printf("Deleting

query

objects

...\n");

_QbQueryDelete(drawHandle);

�10�

_QbQueryDelete(histogramHandle);

_QbQueryDelete(averageHandle);

printf("Freeing

resources

...\n");

if

(SQLDisconnect(hdbc)

!=

SQL_SUCCESS)

sqlError(SQL_NULL_HSTMT);

if

(SQLFreeConnect(hdbc)

!=

SQL_SUCCESS)

sqlError(SQL_NULL_HSTMT);

if

(SQLFreeEnv(henv)

!=

SQL_SUCCESS)

sqlError(SQL_NULL_HSTMT);

printf("\nDone!\n");

}

Figure

24.

QBIC

query

sample

program

(Part

7

of

7)

Issuing

QBIC

queries

Chapter

12.

Querying

images

by

content

141

Issuing

QBIC

queries

142

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Part

4.

Reference

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

Schema

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

User-defined

types

(distinct

types)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

User-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

AlignValue

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

AspectRatio

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

BitsPerSample

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

BytesPerSec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Comment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

CompressType

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Content

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

ContentA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

DB2Audio

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

DB2AudioA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

DB2Image

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

DB2ImageA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

DB2Video

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

DB2VideoA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Duration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

Filename

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

FindInstrument

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

FindTrackName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

FrameRate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

GetInstruments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

GetTrackNames

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Height

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Importer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

ImportTime

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

MaxBytesPerSec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

NumAudioTracks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

NumChannels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

NumColors

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

NumFrames

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

NumVideoTracks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

QbScoreFromName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

QbScoreFromStr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

QbScoreTBFromName

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

QbScoreTBFromStr

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Replace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

ReplaceA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

SamplingRate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 209

Size

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

Thumbnail

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

TicksPerQNote

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

TicksPerSec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Updater

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

UpdateTime

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

Width

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Chapter

14.

Application

programming

interfaces

.

.

.

.

.

.

.

.

.

.

. 219

DBaAdminGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

©

Copyright

IBM

Corp.

1998,

2001

143

DBaAdminGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

DBaAdminIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

DBaDisableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

DBaDisableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

DBaDisableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

DBaEnableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

DBaEnableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 233

DBaEnableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

DBaGetError

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

DBaGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

DBaGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

DBaIsColumnEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 242

DBaIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

DBaIsServerEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

DBaIsTableEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

DBaPlay

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

DBaPrepareAttrs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

DBiAdminGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 252

DBiAdminGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

DBiAdminIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

DBiBrowse

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

DBiDisableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

DBiDisableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

DBiDisableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

DBiEnableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

DBiEnableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

DBiEnableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

DBiGetError

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

DBiGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

DBiGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

DBiIsColumnEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

DBiIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

DBiIsServerEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

DBiIsTableEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

DBiPrepareAttrs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

DBvAdminGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

DBvAdminGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

DBvAdminIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

DBvDisableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

DBvDisableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

DBvDisableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

DBvEnableColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

DBvEnableServer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

DBvEnableTable

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 299

DBvGetError

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

DBvGetInaccessibleFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 302

DBvGetReferencedFiles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

DBvIsColumnEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

DBvIsFileReferenced

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

DBvIsServerEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 310

DBvIsTableEnabled

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

DBvPlay

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

DBvPrepareAttrs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

QbAddFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 316

QbCatalogColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

QbCloseCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

144

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbCreateCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

QbDeleteCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

QbGetCatalogInfo

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

QbListFeatures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

QbOpenCatalog

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

QbQueryAddFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

QbQueryCreate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

QbQueryDelete

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 334

QbQueryGetFeatureCount

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

QbQueryGetString

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 336

QbQueryListFeatures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

QbQueryNameCreate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

QbQueryNameDelete

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

QbQueryNameSearch

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

QbQueryRemoveFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

QbQuerySearch

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

QbQuerySetFeatureData

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

QbQuerySetFeatureWeight

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

QbQueryStringSearch

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

QbReCatalogColumn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 353

QbRemoveFeature

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

Chapter

15.

Administration

commands

for

the

client

.

.

.

.

.

.

.

.

. 357

Entering

DB2

Extender

administration

commands

.

.

.

.

.

.

.

.

.

.

. 357

Getting

online

help

for

DB2

Extender

commands

.

.

.

.

.

.

.

.

.

.

.

. 358

ADD

QBIC

FEATURE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 359

CATALOG

QBIC

COLUMN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 360

CLOSE

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

CREATE

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

DELETE

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

DISABLE

COLUMN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

DISABLE

SERVER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

DISABLE

TABLE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

ENABLE

COLUMN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 368

ENABLE

SERVER

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 369

ENABLE

TABLE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

GET

EXTENDER

STATUS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

GET

INACCESSIBLE

FILES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

GET

QBIC

CATALOG

INFO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 376

GET

REFERENCED

FILES

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

GRANT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 379

OPEN

QBIC

CATALOG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 381

QUIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 382

REMOVE

QBIC

FEATURE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

REVOKE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

TERMINATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

Chapter

16.

Diagnostic

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

Handling

UDF

return

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

Handling

API

return

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

SQLSTATE

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 392

Diagnostic

tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

Start

tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 410

Stop

tracing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

Reformat

trace

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 411

Part

4.

Reference

145

146

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

This

chapter

gives

reference

information

for

the

UDTs

and

UDFs

created

by

the

DB2

Extenders.

Schema

The

extenders

use

the

MMDBSYS

schema

for

all

of

their

object-relational

objects,

including

UDTs

and

UDFs.

User-defined

types

(distinct

types)

Table

19

lists

and

describes

the

user-defined

types

created

by

the

DB2

Extenders.

It

also

lists

the

DB2

source

data

type

for

each

UDT.

Table

19.

User-defined

types

created

by

the

DB2

Extenders

UDT

Source

data

type

Description

DB2IMAGE

VARCHAR(250)

Image

handle.

A

variable-length

string

that

contains

information

needed

to

access

an

image

object.

Image

handles

are

stored

in

a

user

table

column

enabled

for

the

Image

Extender.

DB2AUDIO

VARCHAR(250)

Audio

handle.

A

variable-length

string

that

contains

information

needed

to

access

an

audio

object.

Audio

handles

are

stored

in

a

user

table

column

enabled

for

the

Audio

Extender.

DB2VIDEO

VARCHAR(250)

Video

handle.

A

variable-length

string

that

contains

information

needed

to

access

a

video

object.

Video

handles

are

stored

in

a

user

table

column

enabled

for

the

Video

Extender.

User-defined

functions

This

section

gives

reference

information

for

the

DB2

Extenders.

The

UDFs

are

listed

in

alphabetical

order.

The

following

information

is

given

for

each

UDF:

v

The

extenders

that

provide

the

UDF

v

A

brief

description

v

The

include

(header)

file

for

the

UDF

v

The

SQL

syntax

of

the

UDF

v

A

description,

including

the

data

type,

of

the

UDF

parameters

v

The

value

that

is

returned

by

the

UDF,

including

its

data

type

v

Examples

of

use

Table

20

on

page

148

lists

the

UDFs

and

identifies

the

extenders

that

provide

each

UDF.

The

table

also

points

to

where

you

can

find

more

information

about

each

UDF.

The

UDFs

in

this

table

can

be

coded

in

embedded

SQL

statements

or

in

DB2

CLI

calls.

©

Copyright

IBM

Corp.

1998,

2001

147

Table

20.

DB2

Extender

UDFs

UDF

Description

Image

Audio

Video

See

page

AlignValue

Returns

the

number

of

bytes

per

sample

in

a

WAVE

audio,

or

in

an

audio

track

of

a

video.

x

x

151

AspectRatio

Returns

the

aspect

ratio

of

the

first

track

of

an

MPEG1

and

MPEG2

video.

x

152

BitsPerSample

Returns

the

number

of

bits

of

data

used

to

represent

each

sample

of

WAVE

or

AIFF

audio

in

an

audio,

or

in

an

audio

track

of

a

video.

x

x

153

BytesPerSec

Returns

the

data

transfer

rate,

in

average

bytes

per

second,

for

a

WAVE

audio.

x

154

Comment

Returns

or

updates

a

comment

stored

with

an

image,

audio,

or

video.

x

x

x

155

CompressType

Returns

the

compression

format,

such

as

MPEG-1,

of

a

video.

x

157

Content

Retrieves

or

updates

the

content

of

an

image,

audio,

or

video

from

a

database.

x

x

x

158

ContentA

updates

the

content

of

an

image,

audio,

or

video

with

user-supplied

attributes

from

a

database.

x

x

x

162

DB2Audio

Stores

the

content

of

an

audio

in

a

database

table.

x

164

DB2AudioA

Stores

the

content

of

an

audio

with

user-supplied

attributes

in

a

database

table.

x

166

DB2Image

Stores

the

content

of

an

image

in

a

database

table.

x

169

DB2ImageA

Stores

the

content

of

an

image

with

user-supplied

attributes

in

a

database

table.

x

172

DB2Video

Stores

the

content

of

a

video

in

a

database

table.

x

174

DB2VideoA

Stores

the

content

of

a

video

with

user-supplied

attributes

in

a

database

table.

x

176

Duration

Returns

the

duration

(that

is,

playing

time

in

seconds)

of

a

WAVE

or

AIFF

audio,

or

video.

x

x

179

Filename

Returns

the

name

of

the

server

file

that

contains

the

contents

of

an

image,

audio,

or

video.

x

x

x

180

FindInstrument

Returns

the

track

number

of

the

first

occurrence

of

a

specified

instrument

in

a

MIDI

audio.

x

181

FindTrackName

Returns

the

number

of

a

specified

named

track

in

a

MIDI

audio.

x

182

User-defined

functions

148

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Table

20.

DB2

Extender

UDFs

(continued)

UDF

Description

Image

Audio

Video

See

page

Format

Returns

the

format

of

an

image,

audio,

or

video.

x

x

x

183

FrameRate

Returns

the

throughput

of

a

video

in

frames

per

second.

x

184

GetInstruments

Returns

the

instrument

name

of

all

instruments

in

a

MIDI

audio.

x

185

GetTrackNames

Returns

the

name

of

all

tracks

in

a

MIDI

audio.

x

186

Height

Returns

the

height,

in

pixels,

of

an

image

or

video

frame.

x

x

187

Importer

Returns

the

user

ID

of

the

person

who

stored

an

image,

audio,

or

video

in

a

database

table.

x

x

x

188

ImportTime

Returns

a

timestamp

that

indicates

when

an

image,

audio,

or

video

was

stored

in

a

database

table.

x

x

x

189

MaxBytesPerSec

Returns

the

maximum

throughput

of

a

video

in

bytes

per

second.

x

190

NumAudioTracks

Returns

the

number

of

audio

tracks

in

a

video

or

MIDI

audio.

x

x

191

NumChannels

Returns

the

number

of

recorded

audio

channels

in

a

WAVE

or

AIFF

audio,

or

video.

x

x

192

NumColors

Returns

the

number

of

colors

in

an

image.

x

193

NumFrames

Returns

the

number

of

frames

in

a

video.

x

194

NumVideoTracks

Returns

the

number

of

video

tracks

in

a

video.

x

195

QbScoreFromName

Returns

the

score

of

an

image

(uses

a

named

query

object).

(Replaces

QbScore.)

x

196

QbScoreFromStr

Returns

the

score

of

an

image

(uses

a

query

string).

x

198

QbScoreTBFromName

Returns

a

table

of

scores

from

an

image

column

(uses

a

named

query

object).

x

199

QbScoreTBFromStr

Returns

a

table

of

scores

from

an

image

column

(uses

a

query

string).

x

201

Replace

Updates

the

content

of

an

image,

audio,

or

video

stored

in

a

database,

and

updates

its

comment.

x

x

x

203

ReplaceA

Updates

the

content

of

an

image,

audio,

or

video

with

user-supplied

attributes

stored

in

a

database,

and

updates

its

comment.

x

x

x

206

User-defined

functions

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

149

Table

20.

DB2

Extender

UDFs

(continued)

UDF

Description

Image

Audio

Video

See

page

SamplingRate

Returns

the

sampling

rate

of

a

WAVE

or

AIFF

audio,

or

of

an

audio

track

in

a

video,

in

number

of

samples

per

second.

x

x

209

Size

Returns

the

size

of

an

image,

audio,

or

video,

in

bytes.

x

x

x

210

Thumbnail

Returns

or

updates

a

thumbnail-size

version

of

an

image

or

video

frame

stored

in

a

database.

x

x

211

TicksPerQNote

Returns

the

clock

speed

of

a

recorded

MIDI

audio,

in

ticks

per

quarter

note.

x

213

TicksPerSec

Returns

the

clock

speed

of

a

recorded

MIDI

audio,

in

ticks

per

second.

x

214

Updater

Returns

the

user

ID

of

the

person

who

last

updated

an

image,

audio,

or

video

in

a

database

table.

x

x

x

215

UpdateTime

Returns

a

timestamp

that

indicates

when

an

image,

audio,

or

video

in

a

database

table

was

last

updated.

x

x

x

216

Width

Returns

the

width

in

pixels

of

an

image

or

video

frame.

x

x

217

User-defined

functions

150

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

AlignValue

Table

21.

The

extenders

that

support

AlignValue

Image

Audio

Video

X

X

Returns

the

number

of

bytes

per

sample

in

a

WAVE

audio,

or

in

an

audio

track

of

a

video.

A

WAVE

audio

can

store

its

data

using

one

byte

per

sample

(8-bit

mono,

referred

to

as

“byte

aligned”),

two

bytes

per

sample

(8-bit

stereo

or

16-bit

mono,

referred

to

as

“word

aligned”),

or

four

bytes

per

sample

(16-bit

stereo,

referred

to

as

“double-word

aligned”).

Include

file

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

AlignValue

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio.

Return

values

(data

type)

Bytes

per

sample

value

of

WAVE

audio,

or

audio

track

in

a

video

(SMALLINT).

Values

can

be:

1

byte

aligned

2

word

aligned

4

double-word

aligned

Null

value

audio

in

other

formats

Examples

Get

the

file

name

of

all

audios

that

are

stored

in

the

sound

column

of

the

employee

table

that

are

word

aligned:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvAud_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(SOUND)

INTO

:hvAud_fname

FROM

EMPLOYEE

WHERE

ALIGNVALUE(SOUND)

=

2;

Find

the

bytes

per

sample

value

of

an

audio

track

in

a

video;

the

video

is

stored

in

the

video

column

of

the

employee

table

for

Anita

Jones:

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

hvAlign_val;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

ALIGNVALUE(VIDEO)

INTO

:hvAlign_val

FROM

EMPLOYEE

WHERE

NAME='Anita

Jones';

AlignValue

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

151

AspectRatio

Table

22.

The

extenders

that

support

AspectRatio

Image

Audio

Video

X

Returns

the

aspect

ratio

of

the

first

track

of

an

MPEG

video.

Include

file

dmbvideo.h

Syntax

��

AspectRatio

(

handle

)

��

Parameters

(data

type)

handle

(DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

video.

Return

values

(data

type)

Aspect

ratio

of

first

track

of

MPEG

video,

or

a

null

value

for

video

in

other

formats

(SMALLINT)

Examples

Get

the

aspect

ratio

of

the

video

that

is

stored

for

Robert

Smith

in

the

video

column

of

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

hvAsp_ratio;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

ASPECTRATIO(VIDEO)

INTO

:hvAsp_ratio

FROM

EMPLOYEE

WHERE

NAME='Robert

Smith';

AspectRatio

152

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

BitsPerSample

Table

23.

The

extenders

that

support

BitPerSample

Image

Audio

Video

X

X

Returns

the

number

of

bits

of

data

used

to

represent

each

sample

of

WAVE

or

AIFF

audio

in

an

audio,

or

in

an

audio

track

of

a

video.

Include

file

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

BitsPerSample

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio

or

video.

Return

values

(data

type)

Number

of

bits

of

data

used

to

represent

each

sample

of

video

or

WAVE

or

AIFF

audio

(SMALLINT).

Returns

a

null

value

for

audio

in

other

formats

Examples

Get

the

file

name

of

all

WAVE

audios

stored

in

the

sound

column

of

the

employee

table

whose

bits

per

sample

is

equal

to

8:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvAud_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(SOUND)

INTO

:hvAud_fname

FROM

EMPLOYEE

WHERE

FORMAT(SOUND)=’WAVE’

AND

BITSPERSAMPLE(SOUND)

=

8;

BitsPerSample

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

153

BytesPerSec

Table

24.

The

extenders

that

support

BytesPerSec

Image

Audio

Video

X

Returns

the

data

transfer

rate,

in

average

bytes

per

second,

for

a

WAVE

audio.

Include

file

dmbaudio.h

Syntax

��

BytesPerSec

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio.

Return

values

(data

type)

Data

transfer

rate

(INTEGER).

Returns

a

null

value

for

audio

in

other

formats.

Examples

Get

the

file

name

of

all

audios

stored

in

the

sound

column

of

the

employee

table

whose

transfer

rate,

in

average

bytes

per

second,

is

less

than

44100:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvAud_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(SOUND)

INTO

:hvAud_fname

FROM

EMPLOYEE

WHERE

BYTESPERSEC(SOUND)

<

44100;

BytesPerSec

154

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Comment

Table

25.

The

extenders

that

support

Comment

Image

Audio

Video

X

X

X

Returns

or

updates

a

comment

that

is

stored

with

an

image,

audio,

or

video.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

Retrieve

comment

��

Comment

(

handle

)

��

Syntax

Update

comment

��

Comment

(

handle

,

new_comment

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

new_comment

(LONG

VARCHAR)

New

comment

for

update.

An

empty

string

deletes

the

existing

comment.

Return

values

(data

type)

For

update,

the

handle

of

the

image,

audio,

or

video

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO).

For

retrieval,

the

comment

(LONG

VARCHAR).

Examples

Get

the

file

name

of

all

images

from

the

picture

column

of

the

employee

table

that

have

the

word

“confidential”

in

associated

comments:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(PICTURE)

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE

COMMENT(PICTURE)

LIKE

'%confidential%';

Update

the

comment

that

is

associated

with

the

Anita

Jones’s

video

clip

in

the

video

column

of

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvRemarks[4000];

EXEC

SQL

END

DECLARE

SECTION;

Comment

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

155

/*

Get

the

old

comment

*/

EXEC

SQL

SELECT

COMMENT(VIDEO)

INTO

:hvRemarks

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

/*

Update

the

comment

*/

strcopy

(hvRemarks,

"Updated

video");

EXEC

SQL

UPDATE

EMPLOYEE

SET

video=COMMENT(VIDEO,

:hvRemarks)

WHERE

NAME

=

'Anita

Jones';

Comment

156

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

CompressType

Table

26.

The

extenders

that

support

CompressType

Image

Audio

Video

X

Returns

the

compression

format,

such

as

MPEG-1,

of

a

video.

Include

file

dmbvideo.h

Syntax

��

CompressType

(

handle

)

��

Parameters

(data

type)

handle

(DB2VIDEO)

Column

name

or

host

variable

which

contains

the

handle

of

the

video

Return

values

(data

type)

Compression

format

of

the

video

(VARCHAR(8))

Examples

Get

the

names

of

all

videos

that

are

stored

in

the

video

column

of

the

employee

table

whose

compression

format

is

MPEG-1:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvVid_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(VIDEO)

INTO

:hvVid_fname

FROM

EMPLOYEE

WHERE

COMPRESSTYPE(VIDEO)

=

'MPEG1';

CompressType

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

157

Content

Table

27.

The

extenders

that

support

Content

Image

Audio

Video

X

X

X

Retrieves

or

updates

the

content

of

an

image,

audio,

or

video

from

a

database.

The

content

can

be

retrieved

to

a

client

buffer,

workstation

client

file,

or

server

file.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

Retrieve

content

to

buffer

or

workstation

client

file

��

Content

(

handle

)

��

Syntax

Retrieve

a

segment

of

content

to

buffer

or

workstation

client

file

��

Content

(

handle

,

offset

,

size

)

��

Syntax

Retrieve

content

to

server

file

��

Content

(

handle

,

target_file

,

overwrite

)

��

Syntax

Retrieve

content

to

buffer

or

workstation

client

file

with

format

conversion—image

only

��

Content

(

handle

,

target_format

)

��

Syntax

Retrieve

content

to

server

file

with

format

conversion—image

only

��

Content

(

handle

,

target_file

,

overwrite

,

target_format

)

��

Syntax

Retrieve

content

to

buffer

or

workstation

client

file

with

format

conversion

and

additional

changes—image

only

��

Content

(

handle

,

target_format

,

conversion_options

)

��

Content

158

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Syntax

Retrieve

content

to

server

file

with

format

conversion

and

additional

changes—image

only

��

Content

(

handle

,

target_file

,

overwrite

,

�

�

target_format

,

conversion_options

)

��

Syntax

Update

content

from

buffer

or

workstation

client

file

��

Content

(

handle

,

content

,

source_format

,

target_file

)

��

Syntax

Update

content

from

server

file

��

Content

(

handle

,

source_file

,

source_format

,

stortype

)

��

Syntax

Update

content

from

buffer

or

workstation

client

file

with

format

conversion—image

only

��

Content

(

handle

,

content

,

source_format

,

�

�

target_format

,

target_file

)

��

Syntax

Update

content

from

server

file

with

format

conversion—image

only

��

Content

(

handle

,

source_file

,

source_format

,

�

�

target_format

,

target_file

)

��

Syntax

Update

content

from

buffer

or

workstation

client

file

with

format

conversion

and

additional

changes—image

only

��

Content

(

handle

,

content

,

source_format

,

�

�

target_format

,

conversion_options

,

target_file

)

��

Syntax

Update

content

from

server

file

with

format

conversion

and

additional

changes—image

only

��

Content

(

handle

,

source_file

,

source_format

,

�

�

target_format

,

conversion_options

,

target_file

)

��

Content

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

159

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

offset

(INTEGER)

Starting

offset

(origin

1)

of

an

image,

audio,

or

video

to

be

retrieved.

size

(INTEGER)

Number

of

bytes

of

an

image,

audio,

or

video

to

be

retrieved.

source_file

(VARCHAR(254))

The

name

of

the

file

that

contains

the

content

for

update

of

the

image,

audio,

or

video.

target_file

(VARCHAR(254))

For

retrieval,

the

name

of

the

file

into

which

the

image,

audio,

or

video

is

to

be

retrieved.

For

update,

the

name

of

the

file

that

contains

the

image,

audio,

or

video

to

be

updated.

stortype

(INTEGER)

A

value

that

indicates

where

the

updated

image,

audio,

or

video

will

be

stored.

The

constant

MMDB_STORAGE_TYPE_INTERNAL

(value=1)

indicates

that

the

updated

object

will

be

stored

in

the

database

as

a

BLOB.

The

constant

MMDB_STORAGE_TYPE_EXTERNAL

(value=0)

indicates

that

the

updated

object

will

be

stored

in

a

server

file.

overwrite

(INTEGER)

A

value

that

indicates

whether

to

overwrite

the

target

file

if

it

already

exists.

The

value

can

be

0

or

1.

A

value

of

0

means

the

target

file

will

not

be

overwritten

(in

effect,

the

retrieval

will

not

take

place).

A

value

of

1

means

the

target

file

will

be

overwritten

if

the

target

file

already

exists.

target_format

(VARCHAR(8))

The

format

of

the

image

after

retrieval

or

update.

The

format

of

the

source

image

will

be

converted

as

appropriate.

For

retrieval

of

an

image

to

a

server

file,

if

the

target_file

is

the

same

as

the

source_file,

the

target

format

must

be

the

same

as

the

source

format.

For

MPG1

format,

you

can

specify

MPG1,

mpg1,

MPEG1,

or

mpeg1.

For

MPG2

format,

you

can

specify

MPG2,

mpg2,

MPEG2,

or

mpeg2.

conversion_options

(VARCHAR(100))

Specifies

changes,

such

as

rotation

and

compression,

to

be

applied

to

the

image

when

it

is

retrieved

or

updated.

See

Table

10

on

page

72

for

the

supported

conversion

options.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

for

update

of

the

image,

audio,

or

video.

The

host

variable

can

be

of

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

data

type

of

the

content

to

BLOB_LOCATOR

and

passes

the

LOB

locator

to

the

Content

UDF.

source_format

(VARCHAR(8))

The

format

of

the

source

for

update

of

the

image,

audio,

or

video.

A

null

value

or

empty

string

can

be

specified,

or

for

image

only,

the

character

string

ASIS;

in

these

three

cases,

the

extender

will

attempt

to

determine

the

format

automatically.

For

MPG1

format,

you

can

specify

MPG1,

mpg1,

MPEG1,

or

mpeg1.

For

MPG2

format,

you

can

specify

MPG2,

mpg2,

MPEG2,

or

mpeg2.

Content

160

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Return

values

(data

type)

The

content

of

the

retrieved

image,

audio,

or

video

if

retrieved

to

a

buffer,

(BLOB(2G)

AS

LOCATOR).

If

retrieved

to

a

file,

VARCHAR(254).

For

update,

the

handle

of

the

image,

audio,

or

video

to

be

updated

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO).

Examples

Retrieve

into

a

server

file

the

image

that

is

stored

for

Anita

Jones

in

the

picture

column

of

the

employee

table:

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

CONTENT

(PICTURE,

'/employee/images/ajones.bmp',1)

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE

NAME='Anita

Jones';

Retrieve

into

a

client

buffer

the

1-MB

audio

clip

stored

for

Robert

Smith

in

the

sound

column

of

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB_LOCATOR

audio_loc;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

CONTENT

(SOUND,

1,

1000000)

INTO

:audio_loc

FROM

EMPLOYEE

WHERE

NAME='Robert

Smith';

Update

Anita

Jones’s

image

in

the

picture

column

of

the

employee

table;

convert

the

format

of

the

image

from

BMP

to

GIF

and

reduce

the

image

to

50%

of

its

original

size:

EXEC

SQL

UPDATE

EMPLOYEE

SET

picture

=

CONTENT(PICTURE,

'/employee/newimg/ajones.bmp',

'BMP',

'GIF',

'-s

0.5',

'');

WHERE

NAME='Anita

Jones';

Content

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

161

ContentA

Table

28.

The

extenders

that

support

ContentA

Image

Audio

Video

X

X

X

Updates

the

content

of

an

image,

audio,

or

video

with

user-supplied

attributes

from

a

database.

The

content

can

be

retrieved

to

a

client

buffer,

workstation

client

file,

or

server

file.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

Update

content

with

user-supplied

attributes

from

buffer

or

workstation

client

file

��

ContentA

(

handle

,

content

,

�

�

target_file

,

attrs

,

format

,

compress_type

,

thumbnail

)

��

Syntax

Update

content

with

user-supplied

attributes

from

server

file

��

ContentA

(

handle

,

source_file

,

stortype

,

attrs

,

�

�

format

,

compress_type

,

thumbnail

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

source_file

(VARCHAR(254))

The

name

of

the

file

that

contains

the

content

for

update

of

the

image,

audio,

or

video.

target_file

(VARCHAR(254))

The

name

of

the

file

that

contains

the

image,

audio,

or

video

to

be

updated.

stortype

(INTEGER)

A

value

that

indicates

where

the

updated

image,

audio,

or

video

will

be

stored.

The

constant

MMDB_STORAGE_TYPE_INTERNAL

(value=1)

indicates

that

the

updated

object

will

be

stored

in

the

database

as

a

BLOB.

The

constant

MMDB_STORAGE_TYPE_EXTERNAL

(value=0)

indicates

that

the

updated

object

will

be

stored

in

a

server

file.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

for

update

of

the

image,

audio,

or

video.

The

host

variable

can

be

of

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

data

type

of

the

content

to

BLOB_LOCATOR

and

passes

the

LOB

locator

to

the

Content

UDF.

Content

162

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

format

(VARCHAR(8))

The

format

of

the

source

for

update

of

the

image,

audio,

or

video.

attrs

(VARCHAR

(4096)

FOR

BIT

DATA)

The

attributes

of

the

image,

audio,

or

video

compress_type

(VARCHAR

(8))

The

compression

format

of

the

video

(video

only)

thumbnail

(VARCHAR

(16384)

FOR

BIT

DATA)

A

thumbnail

of

the

image

or

video

frame

(image

and

video

only)

Return

values

(data

type)

The

handle

of

the

image,

audio,

or

video

to

be

updated

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO).

Examples

Update

the

image

that

is

stored

for

Anita

Jones

in

the

picture

column

of

the

employee

table.

The

source

image,

which

is

in

a

server

file,

has

a

user-defined

format,

a

height

of

640

pixels,

and

a

width

of

480

pixels.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvImgattrs[100];

EXEC

SQL

END

DECLARE

SECTION;

DB2IMAGEATTRS

*pimgattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

pimgattr

=

(DB2IMAGEATTRS

*)

hvImgattrs;

pimgattr→width=640;

pimgattr→height=480;

DBiPrepareAttrs(pimgattr);

EXEC

SQL

UPDATE

EMPLOYEE

SET

VIDEO=CONTENTA(

PICTURE,

'/employee/newimg/ajones.bmp',

:hvStorageType,

:ImgAttrs,

'FormatI',

'')

WHERE

NAME='Anita

Jones';

Content

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

163

DB2Audio

Table

29.

The

extenders

that

support

DB2Audio

Image

Audio

Video

X

Stores

the

content

of

an

audio

in

a

database

table.

The

audio

source

can

be

in

a

client

buffer,

workstation

client

file,

or

server

file.

The

audio

can

be

stored

in

the

database

table

as

a

BLOB,

or

in

a

server

file

(referred

to

by

the

database

table).

The

audio

source

can

be

in

a

supported

format,

in

which

case,

the

DB2Audio

Extender

identifies

its

attributes

for

storage,

or

in

an

unsupported

format,

in

which

case

the

attributes

must

be

specified

in

the

UDF.

Include

file

dmbaudio.h

Syntax

Store

content

from

buffer

or

workstation

client

file

��

DB2Audio

(

dbname

,

content

,

format

,

target_file

,

comment

)

��

Syntax

Store

content

from

server

file

��

DB2Audio

(

dbname

,

source_file

,

format

,

stortype

,

comment

)

��

Parameters

(data

type)

dbname

(VARCHAR(18))

The

name

of

the

currently

connected

database,

as

indicated

by

the

CURRENT

SERVER

special

register.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

of

the

audio.

The

host

variable

can

be

of

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

data

type

of

the

content

to

BLOB-LOCATOR

and

passes

the

LOB

locator

to

the

DB2Audio

UDF.

format

(VARCHAR(8))

The

format

of

the

source

audio.

A

null

value

or

empty

string

can

be

specified,

in

which

case

the

Audio

Extender

will

attempt

to

determine

the

source

format

automatically.

The

audio

will

be

stored

in

the

same

format

as

its

source.

See

Table

9

on

page

71

for

supported

audio

formats.

target_file

(VARCHAR(254))

The

name

of

the

target

server

file

(for

storage

to

a

server

file),

or

a

null

value

or

empty

string

(for

storage

into

a

database

table

as

a

BLOB).

The

target

file

can

be

a

fully

qualified

name.

If

the

name

is

unqualified,

the

DB2AUDIOSTORE

and

DB2MMSTORE

environment

variables

on

the

server

are

used

to

locate

the

file.

source_file

(VARCHAR(254))

The

name

of

the

source

server

file.

The

source

file

name

can

be

a

fully

qualified

name

or

an

unqualified

name;

it

cannot

be

a

null

value

or

empty

string.

If

the

name

is

unqualified,

the

DB2AUDIOPATH

and

DB2MMPATH

environment

variables

on

the

server

will

be

used

to

locate

the

file.

DB2Audio

164

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

stortype

(INTEGER)

A

value

that

indicates

where

the

audio

will

be

stored.

The

constant

MMDB_STORAGE_TYPE_INTERNAL

(value=1)

indicates

that

the

audio

will

be

stored

in

the

database

as

a

BLOB;

the

constant

MMDB_STORAGE_TYPE_EXTERNAL

(value=0)

indicates

that

the

audio

content

will

be

stored

in

a

server

file

(pointed

to

from

the

database).

comment

VARCHAR(16384))

A

comment

to

be

stored

with

the

audio.

Return

values

(data

type)

Handle

of

the

audio

(DB2AUDIO)

Examples

Insert

a

record

that

includes

an

audio

clip

for

Anita

Jones

into

the

employee

table.

The

audio

source

is

in

a

client

buffer.

Store

the

audio

clip

in

the

table

as

a

BLOB:

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

BLOB

(5M)

aud_seg;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2AUDIO(

CURRENT

SERVER,

:aud_seg,

'WAVE',

'',

'Anita''s

voice'));

Insert

a

record

that

includes

an

audio

clip

for

Robert

Smith

into

the

employee

table.

The

audio

source

is

in

a

server

file.

The

employee

table

record

will

point

to

the

file.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType

=

MMDB_STORAGE_TYPE_EXTERNAL;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'384779',

'Robert

Smith',

DB2AUDIO(

CURRENT

SERVER,

'/employee/sounds/rsmith.wav',

’WAV’,

:hvStorageType,

'Robert''s

voice'));

DB2Audio

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

165

DB2AudioA

Table

30.

The

extenders

that

support

DB2AudioA

Image

Audio

Video

X

Stores

the

content

of

an

audio

with

user-supplied

attributes

in

a

database

table.

The

audio

source

can

be

in

a

client

buffer,

workstation

client

file,

or

server

file.

The

audio

can

be

stored

in

the

database

table

as

a

BLOB,

or

in

a

server

file

(referred

to

by

the

database

table).

The

audio

source

can

be

in

a

supported

format,

in

which

case,

the

DB2Audio

Extender

identifies

its

attributes

for

storage,

or

in

an

unsupported

format,

in

which

case

the

attributes

must

be

specified

in

the

UDF.

Include

file

dmbaudio.h

Syntax

Store

content

with

user-supplied

attributes

from

buffer

or

workstation

client

file

��

DB2AudioA

(

dbname

,

content

,

target_file

,

�

�

comment

,

attrs

,

tracknames

,

instruments

,

format

)

��

Syntax

Store

content

with

user-supplied

attributes

from

server

file

��

DB2AudioA

(

dbname

,

source_file

,

stortype

,

comment

,

�

�

attrs

,

tracknames

,

instruments

,

format

)

��

Parameters

(data

type)

dbname

(VARCHAR(18))

The

name

of

the

currently

connected

database,

as

indicated

by

the

CURRENT

SERVER

special

register.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

of

the

audio.

The

host

variable

can

be

of

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

data

type

of

the

content

to

BLOB-LOCATOR

and

passes

the

LOB

locator

to

the

DB2Audio

UDF.

format

(VARCHAR(8))

The

format

of

the

source

audio.

A

null

value

or

empty

string

can

be

specified,

in

which

case

the

Audio

Extender

will

attempt

to

determine

the

source

format

automatically.

The

audio

will

be

stored

in

the

same

format

as

its

source.

See

Table

9

on

page

71

for

supported

audio

formats.

target_file

(VARCHAR(254))

The

name

of

the

target

server

file

(for

storage

to

a

server

file),

or

a

null

value

or

empty

string

(for

storage

into

a

database

table

as

a

BLOB).

The

target

file

can

be

a

fully

qualified

name.

If

the

name

is

unqualified,

the

DB2AUDIOSTORE

and

DB2MMSTORE

environment

variables

on

the

server

are

used

to

locate

the

file.

DB2AudioA

166

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

source_file

(VARCHAR(254))

The

name

of

the

source

server

file.

The

source

file

name

can

be

a

fully

qualified

name

or

an

unqualified

name;

it

cannot

be

a

null

value

or

empty

string.

If

the

name

is

unqualified,

the

DB2AUDIOPATH

and

DB2MMPATH

environment

variables

on

the

server

will

be

used

to

locate

the

file.

stortype

(INTEGER)

A

value

that

indicates

where

the

audio

will

be

stored.

The

constant

MMDB_STORAGE_TYPE_INTERNAL

(value=1)

indicates

that

the

audio

will

be

stored

in

the

database

as

a

BLOB;

the

constant

MMDB_STORAGE_TYPE_EXTERNAL

(value=0)

indicates

that

the

audio

content

will

be

stored

in

a

server

file

(pointed

to

from

the

database).

comment

(VARCHAR(16384))

A

comment

to

be

stored

with

the

audio.

attrs

(VARCHAR(4096)

FOR

BIT

DATA)

The

attributes

of

the

audio.

tracknames

(VARCHAR(1536))

The

names

of

all

tracks

in

the

MIDI

audio.

The

values

are

in

track

number

order

(for

example,

PIANO

TUNE;

TRUMPET

FANFARE).

If

a

track

does

not

have

a

name,

its

field

is

blank.

A

null

value

should

be

specified

for

audio

formats

other

than

MIDI.

instruments

(VARCHAR(1536))

The

names

of

all

instruments

in

the

MIDI

audio.

The

values

are

in

track

number

order

(for

example,

PIANO;

TRUMPET;

BASS).

If

a

track

does

not

have

an

associated

intrument,

its

field

is

blank.

A

null

value

should

be

specified

for

audio

formats

other

than

MIDI.

Return

values

(data

type)

Handle

of

the

audio

(DB2AUDIO)

Examples

Insert

a

record

that

includes

an

audio

clip

for

Anita

Jones

into

the

employee

table.

Store

the

audio

clip

as

a

BLOB.

The

source

audio

clip,

which

is

in

a

server

file,

has

a

user-defined

format,

a

sampling

rate

of

44.1

KHz,

and

has

two

recorded

channels.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvAudattr[600];

EXEC

SQL

END

DECLARE

SECTION;

MMDBAudioAttrs

*paudiattr;

hvStorageType

=

MMDB_STORAGE_TYPE_INTERNAL;

paudioattr=(MMDBAudioAttrs

*)

hvAudattr;

paudioAttr→ulSamplingRate=44100;

paudioAttr→usNumChannels=2;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2AUDIOA(

CURRENT

SERVER,

'/employee/sounds/ajones.aud',

:hvStorageType,

'Anita"s

voice',

:hvAudattr,

DB2AudioA

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

167

'',

'',

'FormatA')

);

DB2AudioA

168

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DB2Image

Table

31.

The

extenders

that

support

DB2Image

Image

Audio

Video

X

Stores

the

content

of

an

image

in

a

database

table.

The

image

source

can

be

in

a

client

buffer,

workstation

client

file,

or

server

file.

The

image

can

be

stored

in

the

database

table

as

a

BLOB,

or

in

a

server

file

(referred

to

by

the

database

table).

The

image

source

can

be

in

a

supported

format,

in

which

case

the

DB2

Image

Extender

identifies

its

attributes

for

storage,

or

in

an

unsupported

format,

in

which

case

the

attributes

must

be

specified

in

the

UDF.

Include

file

dmbimage.h

Syntax

Store

content

from

buffer

or

workstation

client

file

��

DB2Image

(

dbname

,

content

,

source_format

,

�

�

target_file

,

comment

)

��

Syntax

Store

content

from

server

file

��

DB2Image

(

dbname

,

source_file

,

source_format

,

�

�

stortype

,

comment

)

��

Syntax

Store

content

from

buffer

or

workstation

client

file

with

format

conversion

��

DB2Image

(

dbname

,

content

,

source_format

,

�

�

target_format

,

target_file

,

comment

)

��

Syntax

Store

content

from

server

file

with

format

conversion

��

DB2Image

(

dbname

,

source_file

,

source_format

,

�

�

target_format

,

target_file

,

comment

)

��

Syntax

Store

content

from

buffer

or

workstation

client

file

with

format

conversion

and

additional

changes

��

DB2Image

(

dbname

,

content

,

source_format

,

�

DB2Image

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

169

�

target_format

,

conversion_options

,

target_file

,

comment

)

��

Syntax

Store

content

from

server

file

with

format

conversion

and

additional

changes

��

DB2Image

(

dbname

,

source_file

,

source_format

,

�

�

target_format

,

conversion_options

,

target_file

,

comment

)

��

Parameters

(data

type)

dbname

(VARCHAR(18))

The

name

of

the

currently

connected

database,

as

indicated

by

the

CURRENT

SERVER

special

register.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

of

the

image.

The

host

variable

can

be

of

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

data

type

of

the

content

to

BLOB_LOCATOR

and

passes

the

LOB

locator

to

the

DB2Image

UDF.

source_format

(VARCHAR(8))

The

format

of

the

source

image.

A

null

value,

empty

string,

or

the

character

string

ASIS

can

be

specified;

in

any

of

these

three

cases,

the

Image

Extender

will

attempt

to

determine

the

source

format

automatically.

The

image

will

be

stored

in

the

same

format

as

its

source.

See

Table

9

on

page

71

for

supported

image

formats.

target_format

(VARCHAR(8))

The

format

of

the

image

after

storage.

The

format

of

the

source

image

will

be

converted

as

appropriate.

target_file

(VARCHAR(254))

The

name

of

the

target

server

file

(for

storage

to

a

server

file),

or

a

null

value

or

empty

string

(for

storage

into

a

database

table

as

a

BLOB).

The

target

file

name

can

be

a

fully

qualified

name.

If

the

name

is

unqualified,

the

DB2IMAGESTORE

and

DB2MMSTORE

environment

variables

on

the

server

are

used

to

locate

the

file.

If

the

image

is

stored

with

format

conversion,

the

path

to

the

target

file

needs

to

be

specified

in

the

DB2IMAGEPATH

and

DB2MMPATH

environment

variables.

source_file

(VARCHAR(254))

The

name

of

the

source

server

file.

The

source

file

name

can

be

a

fully

qualified

name

or

an

unqualified

name;

it

cannot

be

a

null

value

or

empty

string.

If

the

name

is

unqualified,

the

DB2IMAGEPATH

and

DB2MMPATH

environment

variables

on

the

server

will

be

used

to

locate

the

file.

stortype

(INTEGER)

A

value

that

indicates

where

the

image

will

be

stored.

The

constant

MMDB_STORAGE_TYPE_INTERNAL

(value=1)

indicates

that

the

image

will

be

stored

in

the

database

as

a

BLOB;

the

constant

MMDB_STORAGE_TYPE_EXTERNAL

(value=0)

indicates

that

the

image

content

will

be

stored

in

a

server

file

(pointed

to

from

the

database).

comment

(VARCHAR(16384))

A

comment

to

be

stored

with

the

image.

DB2Image

170

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

conversion_options

(VARCHAR(100))

Specifies

changes,

such

as

rotation

and

compression,

to

be

applied

to

the

image

when

it

is

stored.

See

Table

10

on

page

72

for

the

supported

conversion

options.

Return

values

(data

type)

Handle

of

the

image

(DB2IMAGE)

Examples

Insert

a

record

that

includes

an

image

for

Anita

Jones

into

the

employee

table.

The

image

source

is

in

a

client

buffer.

Store

the

image

in

the

table

as

a

BLOB:

EXEC

SQL

BEGIN

DECLARE

SECTION

SQL

TYPE

IS

BLOB

(2M)

hvImg

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2IMAGE(

CURRENT

SERVER,

:hvImg,

'ASIS',

'',

'Anita''s

picture'));

Insert

a

record

that

includes

an

image

for

Robert

Smith

into

the

employee

table.

The

image

source

is

in

a

server

file.

The

employee

table

record

will

point

to

the

file.

Convert

the

format

of

the

image

from

BMP

to

GIF

when

stored.

Also

crop

the

image

to

a

width

of

110

pixels

and

a

height

of

150

pixels

and

compress

the

image

by

using

LZW

type

compression:

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'384779',

'Robert

Smith',

DB2IMAGE(

CURRENT

SERVER,

'/employee/pictures/rsmith.bmp',

'BMP',

'GIF',

'-x

110

-y

150

-c

14',

'',

'Robert"s

picture'));

DB2Image

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

171

DB2ImageA

Table

32.

The

extenders

that

support

DB2ImageA

Image

Audio

Video

X

Stores

the

content

of

an

image

with

user-supplied

attributes

in

a

database

table.

The

image

source

can

be

in

a

client

buffer,

workstation

client

file,

or

server

file.

The

image

can

be

stored

in

the

database

table

as

a

BLOB,

or

in

a

server

file

(referred

to

by

the

database

table).

The

image

source

can

be

in

a

supported

format,

in

which

case

the

DB2

Image

Extender

identifies

its

attributes

for

storage,

or

in

an

unsupported

format,

in

which

case

the

attributes

must

be

specified

in

the

UDF.

Include

file

dmbimage.h

Syntax

Store

content

with

user-supplied

attributes

from

buffer

or

workstation

client

file

��

DB2ImageA

(

dbname

,

content

,

target_file

,

�

�

comment

,

attrs

,

format

,

thumbnail

)

��

Syntax

Store

content

with

user-supplied

attributes

from

server

file

��

DB2Image

(

dbname

,

source_file

,

stortype

,

comment

,

�

�

attrs

,

format

,

thumbnail

)

��

Parameters

(data

type)

dbname

(VARCHAR(18))

The

name

of

the

currently

connected

database,

as

indicated

by

the

CURRENT

SERVER

special

register.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

of

the

image.

The

host

variable

can

be

of

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

data

type

of

the

content

to

BLOB_LOCATOR

and

passes

the

LOB

locator

to

the

DB2Image

UDF.

format

(VARCHAR(8))

The

format

of

the

source

image.

A

null

value,

empty

string,

or

the

character

string

ASIS

can

be

specified;

in

any

of

these

three

cases,

the

Image

Extender

will

attempt

to

determine

the

source

format

automatically.

The

image

will

be

stored

in

the

same

format

as

its

source.

See

Table

9

on

page

71

for

supported

image

formats.

target_file

(VARCHAR(254))

The

name

of

the

target

server

file

(for

storage

to

a

server

file),

or

a

null

value

or

empty

string

(for

storage

into

a

database

table

as

a

BLOB).

The

target

file

name

can

be

a

fully

qualified

name.

If

the

name

is

unqualified,

the

DB2IMAGESTORE

and

DB2MMSTORE

environment

variables

on

the

server

are

used

to

locate

the

file.

If

the

image

is

stored

with

format

DB2ImageA

172

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

conversion,

the

path

to

the

target

file

needs

to

be

specified

in

the

DB2IMAGEPATH

and

DB2MMPATH

environment

variables.

source_file

(VARCHAR(254))

The

name

of

the

source

server

file.

The

source

file

name

can

be

a

fully

qualified

name

or

an

unqualified

name;

it

cannot

be

a

null

value

or

empty

string.

If

the

name

is

unqualified,

the

DB2IMAGEPATH

and

DB2MMPATH

environment

variables

on

the

server

will

be

used

to

locate

the

file.

stortype

(INTEGER)

A

value

that

indicates

where

the

image

will

be

stored.

The

constant

MMDB_STORAGE_TYPE_INTERNAL

(value=1)

indicates

that

the

image

will

be

stored

in

the

database

as

a

BLOB;

the

constant

MMDB_STORAGE_TYPE_EXTERNAL

(value=0)

indicates

that

the

image

content

will

be

stored

in

a

server

file

(pointed

to

from

the

database).

comment

(VARCHAR(16384))

A

comment

to

be

stored

with

the

image.

Return

values

(data

type)

Handle

of

the

image

(DB2IMAGE)

Examples

Insert

a

record

that

includes

an

image

for

Robert

Smith

into

the

employee

table.

The

source

image,

which

is

in

a

server

file,

has

a

user-defined

format,

a

height

of

640

pixels,

and

a

width

of

480

pixels.

Store

the

image

as

a

BLOB:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvImgattrs[100];

EXEC

SQL

END

DECLARE

SECTION;

DB2IMAGEATTRS

*pimgattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

pimgattr

=

(DB2IMAGEATTRS

*)

hvImgattrs;

pimgattr→width=640;

pimgattr→height=480;

DBiPrepareAttrs(pimgattr);

DBEXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2IMAGEA(

CURRENT

SERVER,

'/employee/images/ajones.bmp',

:hvStorageType,

'Anita''s

picture',

:hvImgattrs,

'FormatI',

'')

);

DB2ImageA

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

173

DB2Video

Table

33.

The

extenders

that

support

DB2Video

Image

Audio

Video

X

Stores

the

content

of

a

video

in

a

database

table.

The

video

source

can

be

in

a

client

buffer,

workstation

client

file,

or

server

file.

The

video

can

be

stored

in

the

database

table

as

a

BLOB,

or

in

a

server

file

(referred

to

by

the

database

table).

The

video

source

can

be

in

a

supported

format,

in

which

case

the

DB2

Video

Extender

identifies

its

attributes

for

storage,

or

in

an

unsupported

format,

in

which

case

the

attributes

must

be

specified

in

the

UDF.

Include

file

dmbvideo.h

Syntax

Store

content

from

buffer

or

workstation

client

file

��

DB2Video

(

dbname

,

content

,

format

,

target_file

,

comment

)

��

Syntax

Store

content

from

server

file

��

DB2Video

(

dbname

,

source_file

,

format

,

stortype

,

comment

)

��

Parameters

(data

type)

dbname

(VARCHAR(18))

The

name

of

the

currently

connected

database,

as

indicated

by

the

CURRENT

SERVER

special

register.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

of

the

video.

The

host

variable

can

be

of

data

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

content

to

BLOB_LOCATOR

and

passes

the

LOB

locator

to

the

DB2Video

UDF.

If

the

content

is

in

a

client

buffer,

the

buffer

must

contain

at

least

the

first

640

KB

of

the

content

to

ensure

that

the

complete

video

header

is

read.

format

(VARCHAR(8))

The

format

of

the

source

video.

See

Table

9

on

page

71

for

supported

video

formats.

For

MPG1

format,

you

can

specify

MPG1,

mpg1,

MPEG1,

or

mpeg1.

For

MPG2

format,

you

can

specify

MPG2,

mpg2,

MPEG2,

or

mpeg2.

target_file

(VARCHAR(254))

The

name

of

the

target

server

file

(for

storage

to

a

server

file),

or

a

null

value

or

empty

string

(for

storage

into

a

database

table

as

a

BLOB).

The

server

file

can

must

be

a

fully

qualified

name.

If

the

file

name

is

unqualified,

the

DB2VIDEOSTORE

and

DB2MMSTORE

environment

variables

on

the

server

are

used

to

locate

the

file.

source_file

(VARCHAR(254))

The

name

of

the

source

server

file.

The

name

can

be

a

fully

qualified

name

or

an

unqualified

name;

it

cannot

be

a

null

value

or

empty

string.

If

the

DB2Video

174

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

name

is

unqualified,

the

DB2VIDEOPATH

and

DB2MMPATH

environment

variables

on

the

server

will

be

used

to

locate

the

file.

stortype

(INTEGER)

A

value

that

indicates

where

the

video

will

be

stored.

The

constant

MMDB_STORAGE_TYPE_INTERNAL

(value=1)

indicates

that

the

video

will

be

stored

in

the

database

as

a

BLOB;

the

constant

MMDB_STORAGE_TYPE_EXTERNAL

(value=0)

indicates

that

the

video

content

will

be

stored

in

a

server

file

(pointed

to

from

the

database).

comment

(VARCHAR(16384))

A

comment

to

be

stored

with

the

video.

Return

values

(data

type)

Handle

of

the

video

(DB2VIDEO)

Examples

Insert

a

record

that

includes

a

video

clip

for

Anita

Jones

into

the

employee

table.

The

video

source

is

in

a

client

buffer.

Store

the

video

clip

in

the

table

as

a

BLOB:

EXEC

SQL

BEGIN

DECLARE

SECTION

SQL

TYPE

IS

BLOB

(8M)

vid;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2VIDEO(

CURRENT

SERVER,

:vid,

'MPEG1',

CAST(NULL

as

VARCHAR(254))),

'Anita''s

video'));

Insert

a

record

that

includes

a

video

clip

for

Robert

Smith

into

the

employee

table.

The

video

source

is

in

a

server

file.

The

employee

table

record

will

point

to

the

file:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType

=

MMDB_STORAGE_TYPE_EXTERNAL;

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'384779',

'Robert

Smith',

DB2VIDEO(

CURRENT

SERVER,

'/employee/videos/rsmith.mpg',

'MPEG1',

:hvStorageType,

'Robert''s

video'));

DB2Video

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

175

DB2VideoA

Table

34.

The

extenders

that

support

DB2VideoA

Image

Audio

Video

X

Stores

the

content

of

a

video

with

user-supplied

attributes

in

a

database

table.

The

video

source

can

be

in

a

client

buffer,

workstation

client

file,

or

server

file.

The

video

can

be

stored

in

the

database

table

as

a

BLOB,

or

in

a

server

file

(referenced

by

the

database

table).

The

video

source

can

be

in

a

supported

format,

in

which

case

the

DB2

Video

Extender

identifies

its

attributes

for

storage,

or

in

an

unsupported

format,

in

which

case

the

attributes

must

be

specified

in

the

UDF.

Include

file

dmbvideo.h

Syntax

Store

content

with

user-supplied

attributes

from

buffer

or

workstation

client

file

��

DB2VideoA

(

dbname

,

content

,

target_file

,

�

�

comment

,

attrs

,

format

,

compress_type

,

thumbnail

)

��

Syntax

Store

content

with

user-supplied

attributes

from

server

file

��

DB2VideoA

(

dbname

,

source_file

,

stortype

,

comment

,

�

�

attrs

,

format

,

compress_type

,

thumbnail

)

��

Parameters

(data

type)

dbname

(VARCHAR(18))

The

name

of

the

currently

connected

database,

as

indicated

by

the

CURRENT

SERVER

special

register.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

of

the

video.

The

host

variable

can

be

of

data

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

content

to

BLOB_LOCATOR

and

passes

the

LOB

locator

to

the

DB2Video

UDF.

If

the

content

is

in

a

client

buffer,

the

buffer

must

contain

at

least

the

first

640

KB

of

the

content

to

ensure

that

the

complete

video

header

is

read.

format

(VARCHAR(8))

The

format

of

the

source

video.

A

null

value

or

empty

string

can

be

specified,

in

which

case,

the

video

will

be

stored

in

the

same

format

as

its

source.

See

Table

9

on

page

71

for

supported

video

formats.

For

MPG1

format,

you

can

specify

MPG1,

mpg1,

MPEG1,

or

mpeg1.

For

MPG2

format,

you

can

specify

MPG2,

mpg2,

MPEG2,

or

mpeg2.

target_file

(VARCHAR(254))

The

name

of

the

target

server

file

(for

storage

to

a

server

file),

or

a

null

value

or

empty

string

(for

storage

into

a

database

table

as

a

BLOB).

The

DB2VideoA

176

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

server

file

can

must

be

a

fully

qualified

name.

If

the

file

name

is

unqualified,

the

DB2VIDEOSTORE

and

DB2MMSTORE

environment

variables

on

the

server

are

used

to

locate

the

file.

source_file

(VARCHAR(254))

The

name

of

the

source

server

file.

The

name

can

be

a

fully

qualified

name

or

an

unqualified

name;

it

cannot

be

a

null

value

or

empty

string.

If

the

name

is

unqualified,

the

DB2VIDEOPATH

and

DB2MMPATH

environment

variables

on

the

server

will

be

used

to

locate

the

file.

stortype

(INTEGER)

A

value

that

indicates

where

the

video

will

be

stored.

The

constant

MMDB_STORAGE_TYPE_INTERNAL

(value=1)

indicates

that

the

video

will

be

stored

in

the

database

as

a

BLOB;

the

constant

MMDB_STORAGE_TYPE_EXTERNAL

(value=0)

indicates

that

the

video

content

will

be

stored

in

a

server

file

(pointed

to

from

the

database).

comment

(VARCHAR(16384))

A

comment

to

be

stored

with

the

video.

attrs

(VARCHAR

(4096)

FOR

BIT

DATA)

The

attributes

of

the

video.

compress_type

(VARCHAR

(8))

The

compression

format

of

the

video.

thumbnail

(VARCHAR

(16384)

FOR

BIT

DATA)

A

thumbnail

image

that

represents

the

video.

Return

values

(data

type)

Handle

of

the

video

(DB2VIDEO)

Examples

Insert

a

record

that

includes

a

video

clip

in

a

database

table.

The

source

video

clip,

which

is

in

a

server

file,

has

a

user-defined

format.

Keep

the

video

content

in

the

server

file

(the

database

table

record

will

point

to

the

file).

Also

store

a

thumbnail

that

represents

the

video:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvVidattrs[4000];

char

hvThumbnail[16384];

EXEC

SQL

END

DECLARE

SECTION;

MMDBVideoAttrs

*pvideoAttr;

hvStorageType=MMDB_STORAGE_TYPE_EXTERNAL;

pvideoAttr=(MMDBVideoAttrs

*)hvVidattrs;

/*

Generate

thumbnail

and

assign

to

thumbnail

variable

*/

EXEC

SQL

INSERT

INTO

EMPLOYEE

VALUES(

'128557',

'Anita

Jones',

DB2VIDEOA(

CURRENT

SERVER,

'/employee/videos/ajones.vid',

:hvStorageType,

'Anita''s

video',

:hvVidattrs,

DB2VideoA

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

177

'FormatV',

'MPEG1',

:hvThumbnail)

);

DB2VideoA

178

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Duration

Table

35.

The

extenders

that

support

Duration

Image

Audio

Video

X

X

Returns

the

duration

(that

is,

the

playing

time

in

seconds)

of

a

WAVE

or

AIFF

audio,

or

video.

Include

file

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

Duration

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio

or

video.

Return

values

(data

type)

Duration,

in

seconds,

of

a

video,

or

the

duration,

in

seconds,

of

a

WAVE,

AIFF

or

user-defined

format

audio

(INTEGER).

Returns

a

null

value

for

audio

in

other

formats.

Examples

Display

the

duration

of

all

videos

that

are

stored

in

the

video

column

of

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvDur_vid;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

DURATION(VIDEO)

INTO

:hvDur_vid

FROM

EMPLOYEE;

Duration

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

179

Filename

Table

36.

The

extenders

that

support

Filename

Image

Audio

Video

X

X

X

Returns

the

name

of

the

server

file

that

contains

the

contents

of

an

image,

audio,

or

video

if

the

object

content

is

stored

in

a

file

(pointed

to

from

a

database

table).

If

the

image,

audio,

or

video

is

stored

in

a

database

table

as

a

BLOB,

a

null

value

is

returned.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

Filename

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

Return

values

(data

type)

File

name

of

the

server

file

if

object

content

is

in

a

server

file

(VARCHAR(254));

null

value

if

object

is

stored

as

a

BLOB.

Examples

Display

the

file

name

of

the

video

for

the

Robert

Smith

entry

in

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvVid_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(VIDEO)

INTO

:hvVid_fname

FROM

EMPLOYEE

WHERE

NAME='Robert

Smith';

Filename

180

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

FindInstrument

Table

37.

The

extenders

that

support

FindInstrument

Image

Audio

Video

X

Returns

the

track

number

of

the

first

occurrence

of

a

specified

instrument

in

a

MIDI

audio.

Include

file

dmbaudio.h

Syntax

��

FindInstrument

(

handle

,

instrument

)

��

Parameters

(data

type)

handle

(DB2AUDIO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio.

instrument

(VARCHAR(255))

Name

of

the

instrument

to

be

searched

for.

The

Audio

Extender

will

look

for

an

instrument

whose

name

exactly

matches

the

supplied

name.

Return

values

(data

type)

Track

number

that

contains

the

first

occurrence

of

the

specified

instrument

name

(SMALLINT);

a

value

of

-1

is

returned

if

an

instrument

of

the

specified

name

is

not

found.

NULL

is

returned

for

audio

in

other

formats.

Examples

Find

the

first

occurrence

of

PIANO

in

Robert

Smith’s

MIDI

audio

recording

stored

in

the

sound

column

of

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

hvInstr;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FINDINSTRUMENT(SOUND,

'PIANO')

INTO

:hvInstr

FROM

EMPLOYEE

WHERE

NAME

=

'Robert

Smith';

FindInstrument

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

181

FindTrackName

Table

38.

The

extenders

that

support

FindTrackName

Image

Audio

Video

X

Returns

the

number

of

a

specified

named

track

in

a

MIDI

audio.

Include

file

dmbaudio.h

Syntax

��

FindTrackName

(

handle

,

trackname

)

��

Parameters

(data

type)

handle

(DB2AUDIO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio.

trackname

(VARCHAR(255))

Name

of

the

track

to

be

searched

for.

The

Audio

Extender

will

look

for

a

track

whose

name

exactly

matches

the

supplied

name.

Return

values

(data

type)

Number

of

the

named

track;

of

the

specified

instrument

name

(SMALLINT).

A

value

of

-1

is

returned

if

a

track

of

the

specified

name

is

not

found.

A

null

value

is

returned

for

audio

in

other

formats.

Examples

Determine

if

there

is

a

track

named

WELCOME

in

Robert

Smith’s

MIDI

audio

recording.

The

audio

recording

is

stored

in

the

sound

column

of

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

hvTrack;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FINDTRACKNAME(SOUND,

'WELCOME')

INTO

:hvTrack

FROM

EMPLOYEE

WHERE

NAME

=

'Robert

Smith';

FindTrackName

182

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Format

Table

39.

The

extenders

that

support

Format

Image

Audio

Video

X

X

X

Returns

the

format

of

an

image,

audio,

or

video.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

Format

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

Return

values

(data

type)

Format

of

the

image,

audio,

or

video

(VARCHAR(8).

See

Table

9

on

page

71

for

the

supported

image,

audio,

and

video

formats.

Examples

Get

the

names

of

all

employees

whose

images

stored

in

the

picture

column

of

the

employee

table

are

in

GIF

format:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvName[30];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

NAME

INTO

:hvName

FROM

EMPLOYEE

WHERE

FORMAT(PICTURE)='GIF';

Format

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

183

FrameRate

Table

40.

The

extenders

that

support

FrameRate

Image

Audio

Video

X

Returns

the

throughput

of

a

video

in

frames

per

second.

Include

file

dmbvideo.h

Syntax

��

FrameRate

(

handle

)

��

Parameters

(data

type)

handle

(DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

video.

Return

values

(data

type)

Frame

rate

of

video

(SMALLINT).

Returns

a

null

value

if

the

throughput

rate

is

variable.

Examples

Get

the

frame

rate

of

the

video

that

is

stored

in

the

video

column

of

the

employee

table

for

Anita

Jones:

EXEC

SQL

BEGIN

DECLARE

SECTION;

short

hvFm_rate;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FRAMERATE

(VIDEO)

FROM

EMPLOYEE

INTO

:hvFm_rate

WHERE

NAME='Anita

Jones';

FrameRate

184

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

GetInstruments

Table

41.

The

extenders

that

support

GetInstruments

Image

Audio

Video

X

Returns

instrument

name

of

all

instruments

in

a

MIDI

audio.

Include

file

dmbaudio.h

Syntax

��

GetInstruments

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio.

Return

values

(data

type)

Instrument

name

of

all

instruments

in

the

MIDI

audio

(VARCHAR(1536)).

The

values

are

returned

in

track

number

order

(for

example,

PIANO;

TRUMPET;

BASS).

The

result

is

divided

into

n

fields,

where

n

is

the

number

of

tracks

in

the

MIDI

audio.

If

a

track

does

not

have

an

associated

intrument,

its

field

is

blank.

A

null

value

is

returned

for

audio

formats

other

than

MIDI.

Examples

Find

all

the

instruments

(that

is,

track

numbers

and

instrument

names)

in

Robert

Smith’s

MIDI

audio

recording.

The

audio

recording

is

stored

in

the

sound

column

of

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvAud_Instr[1536];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

GETINSTRUMENTS(SOUND)

INTO

:hvAud_Instr

FROM

EMPLOYEE

WHERE

NAME

=

'Robert

Smith';

GetInstruments

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

185

GetTrackNames

Table

42.

The

extenders

that

support

GetTrackNames

Image

Audio

Video

X

Returns

the

name

of

all

tracks

in

a

MIDI

audio.

Include

file

dmbaudio.h

Syntax

��

GetTrackNames

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio.

Return

values

(data

type)

Name

of

all

tracks

in

the

MIDI

audio

(VARCHAR(1536)).

The

values

are

returned

in

track

number

order

(for

example,

PIANO

TUNE;

TRUMPET

FANFARE).

The

result

is

divided

into

n

fields,

where

n

is

the

number

of

tracks

in

the

MIDI

audio.

If

a

track

does

not

have

a

name,

its

field

is

blank.

A

null

value

is

returned

for

audio

formats

other

than

MIDI.

Examples

Get

all

the

track

numbers

and

track

names

in

Robert

Smith’s

MIDI

audio

recording

stored

in

the

sound

column

of

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvTracks[1536];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

GETTRACKNAMES(SOUND)

INTO

:hvTracks

FROM

EMPLOYEE

WHERE

NAME

=

'Robert

Smith';

GetTrackNames

186

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Height

Table

43.

The

extenders

that

support

Height

Image

Audio

Video

X

X

Returns

the

height,

in

pixels,

of

an

image

or

video

frame.

Include

file

image

dmbimage.h

video

dmbvideo.h

Syntax

��

Height

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image

or

video.

Return

values

(data

type)

Height

in

pixels

(INTEGER)

Examples

Get

the

file

name

of

all

images

in

the

picture

column

of

the

employee

table

that

are

shorter

than

500

pixels:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(PICTURE)

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE

HEIGHT(PICTURE)<500;

Height

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

187

Importer

Table

44.

The

extenders

that

support

Importer

Image

Audio

Video

X

X

X

Returns

the

user

ID

of

the

person

who

stored

an

image,

audio,

or

video

in

a

database

table.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

Importer

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

Return

values

(data

type)

User

ID

of

importer

(CHAR(8))

Examples

Get

the

name

of

all

files

for

audios

stored

in

the

sound

column

of

the

employee

table

by

user

ID

rsmith:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvAud_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(SOUND)

INTO

:hvAud_fname

FROM

EMPLOYEE

WHERE

IMPORTER(SOUND)='rsmith';

Importer

188

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

ImportTime

Table

45.

The

extenders

that

support

ImportTime

Image

Audio

Video

X

X

X

Returns

a

timestamp

that

indicates

when

an

image,

audio,

or

video

was

stored

in

a

database

table.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

ImportTime

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

Return

values

(data

type)

Timestamp

when

image,

audio,

or

video

was

stored

(TIMESTAMP)

Examples

Get

the

names

of

all

files

for

images

that

were

stored

in

the

picture

column

of

the

employee

table

more

than

a

year

ago:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(PICTURE)

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE(CURRENT

TIMESTAMP

-

IMPORTTIME(PICTURE))>365;

ImportTime

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

189

MaxBytesPerSec

Table

46.

The

extenders

that

support

MaxBytesPerSec

Image

Audio

Video

X

Returns

the

maximum

throughput

of

a

video

in

bytes

per

second.

Include

file

dmbvideo.h

Syntax

��

MaxBytesPerSec

(

handle

)

��

Parameters

(data

type)

handle

(DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

video.

Return

values

(data

type)

Throughput

of

video

(INTEGER).

Returns

a

null

value

if

the

throughput

rate

is

variable.

Examples

Get

the

maximum

throughput

of

the

video

that

is

stored

in

the

video

column

of

the

employee

table

for

Anita

Jones:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvMax_BytesPS;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

MAXBYTESPERSEC(VIDEO)

INTO

:hvMax_BytesPS

FROM

EMPLOYEE

WHERE

NAME='Anita

Jones';

MaxBytesPerSec

190

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

NumAudioTracks

Table

47.

The

extenders

that

support

NumAudioTracks

Image

Audio

Video

X

X

Returns

the

number

of

audio

tracks

in

a

video

or

MIDI

audio.

Include

file

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

NumAudioTracks

(

handle

)

��

Parameters

(data

type)

handle

(

DB2AUDIO

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio

or

video.

Return

values

(data

type)

Number

of

audio

tracks

in

the

video

or

MIDI

audio

(SMALLINT).

Returns

a

null

value

for

audio

in

other

formats.

Examples

Get

the

names

of

any

video

files

from

the

video

column

of

the

employee

table

that

do

not

contain

any

audio

tracks:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvVid_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(VIDEO)

INTO

:hvVid_fname

FROM

EMPLOYEE

WHERE

NUMAUDIOTRACKS(VIDEO)

=

0;

NumAudioTracks

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

191

NumChannels

Table

48.

The

extenders

that

support

NumChannels

Image

Audio

Video

X

X

Returns

the

number

of

recorded

audio

channels

in

a

WAVE

or

AIFF

audio,

or

video.

Include

file

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

NumChannels

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio

or

video.

Return

values

(data

type)

Number

of

recorded

audio

channels

in

the

video

or

WAVE

or

AIFF

audio

(SMALLINT).

Returns

a

null

value

for

audio

in

other

formats.

Examples

Get

the

names

of

all

audio

files

from

the

sound

column

of

the

employee

table

that

were

recorded

in

stereo

(that

is,

2

channels):

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvAud_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(SOUND)

INTO

:hvAud_fname

FROM

EMPLOYEE

WHERE

NUMCHANNELS(SOUND)

=

2;

NumChannels

192

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

NumColors

Table

49.

The

extenders

that

support

NumColors

Image

Audio

Video

X

Returns

the

number

of

colors

in

an

image.

Include

file

dmbimage.h

Syntax

��

NumColors

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE)

Column

name

or

host

variable

that

contains

the

handle

of

the

image.

Return

values

(data

type)

Number

of

colors

in

image

(INTEGER)

Examples

Get

the

names

of

image

files

from

the

picture

column

of

the

employee

table

for

images

that

have

less

than

16

colors:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(PICTURE)

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE

NUMCOLORS(PICTURE)

<

16;

NumColors

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

193

NumFrames

Table

50.

The

extenders

that

support

NumFrames

Image

Audio

Video

X

Returns

the

number

of

frames

in

a

video.

Include

file

dmbvideo.h

Syntax

��

NumFrames

(

handle

)

��

Parameters

(data

type)

handle

(DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

video.

Return

values

(data

type)

Number

of

frames

in

video

(INTEGER).

Returns

a

null

value

if

the

throughput

rate

is

variable.

Examples

Get

the

number

of

frames

in

the

video

that

is

stored

in

the

video

column

of

the

employee

table

for

Robert

Smith:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvNum_Frames;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

NUMFRAMES

(VIDEO)

INTO

:hvNum_Frames

FROM

EMPLOYEE

WHERE

NAME='Robert

Smith';

NumFrames

194

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

NumVideoTracks

Table

51.

The

extenders

that

support

NumVideoTracks

Image

Audio

Video

X

Returns

the

number

of

video

tracks

in

a

video.

Include

file

dmbvideo.h

Syntax

��

NumVideoTracks

(

handle

)

��

Parameters

(data

type)

handle

(DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

video.

Return

values

(data

type)

Number

of

video

tracks

(SMALLINT)

Examples

Get

the

file

name

of

all

videos

from

the

video

column

of

the

employee

table

that

have

more

than

one

video

track:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvVid_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME

(VIDEO)

INTO

:hvVid_fname

FROM

EMPLOYEE

WHERE

NUMVIDEOTRACKS(VIDEO)

>

1;

NumVideoTracks

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

195

QbScoreFromName

Table

52.

The

extenders

that

support

QbScoreFromName

Image

Audio

Video

X

Returns

the

score

of

an

image,

which

is

a

number

that

expresses

how

closely

the

features

of

the

image

match

those

of

a

query

object.

The

QBIC

catalog

associated

with

the

column

to

which

the

image

handle

belongs

is

used

to

calculate

the

score

of

the

image.

The

lower

the

score,

the

more

closely

the

features

of

the

image

match

those

of

the

specified

query

object.

(QbScoreFromName

replaces

QbScore,

but

QbScore

is

still

accepted.)

Notes:

1.

EEE

Only:

QbScoreFromName

is

not

supported

in

a

partitioned

database

environment.

Use

the

the

QbScoreFromStr

UDF

instead,

after

using

the

QbQueryGetString

API

to

get

the

query

string.

2.

QbScoreFromName

will

be

deprecated

in

future

releases

for

non-partitioned

database

environments.

To

reuse

a

query,

you

should

use

the

QbQueryGetString

API

to

get

the

query

string

and

save

that

string

for

later

use

in

your

application.

Include

file

none

Syntax

��

QbScoreFromName

(

imgHandle

,

queryName

)

��

Syntax

Depricated

version

��

QbScoreFromName

(

queryName

,

imgHandle

)

��

Parameters

(data

type)

imgHandle

(DB2Image)

The

handle

of

the

image.

queryName

(varchar(18))

The

name

of

the

query

object.

Return

values

(data

type)

The

score

of

the

image

(DOUBLE).

The

score

can

range

from

0.0

to

a

very

large

number

approaching

infinity.

The

lower

the

score,

the

closer

the

feature

values

of

the

target

image

match

the

feature

values

specified

in

the

query.

A

score

of

0.0

means

an

exact

match.

A

score

of

a

null

value

means

that

the

image

has

not

been

cataloged;

the

depricated

version

of

this

UDF

returns

score

of

-1

when

the

image

has

not

been

cataloged.

Examples

Find

the

cataloged

images

in

a

table

column

whose

average

color

is

very

close

to

red:

QbScoreFromName

196

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

Img_fnd[100];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

NAME

INTO

:Img_fnd

FROM

FABRIC

WHERE

(QBSCOREFROMNAME(SWATCH_IMG,

'fshavgcol'))<0.1;

QbScoreFromName

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

197

QbScoreFromStr

Table

53.

The

extenders

that

support

QbScoreFromStr

Image

Audio

Video

X

Returns

the

score

of

an

image,

which

is

a

number

that

expresses

how

closely

the

features

of

the

image

match

those

of

a

query

string.

The

QBIC

catalog

that

is

associated

with

the

column

to

which

the

image

handle

belongs

is

used

to

calculate

the

score

of

the

image.

The

lower

the

score,

the

more

closely

the

features

of

the

image

match

those

of

the

query

string.

Include

file

none

Syntax

��

QbScoreFromStr

(

imgHandle

,

query

)

��

Syntax

Depricated

version

��

QbScoreFromStr

(

query

,

imgHandle

)

��

Parameters

(data

type)

imgHandle

(DB2Image)

The

handle

of

the

image.

query

(VARCHAR(1024))

The

query

string.

Return

values

(data

type)

The

score

of

the

image

(DOUBLE).

The

score

can

range

from

0.0

to

a

very

large

number

approaching

infinity.

The

lower

the

score,

the

more

closely

the

feature

values

of

the

target

image

match

the

feature

values

specified

in

the

query.

A

score

of

0.0

means

an

exact

match.

A

score

of

a

null

value

means

that

the

image

has

not

been

cataloged;

the

depricated

version

of

this

UDF

returns

score

of

-1

when

the

image

has

not

been

cataloged.

Examples

Find

the

cataloged

images

in

a

table

column

whose

average

color

is

very

close

to

red.:

SELECT

name

FROM

fabric

WHERE

(QbScoreFromStr(Swatch_Img,

'QbColorFeatureClass

color=<255,

0,

0>'))<0.1

QbScoreFromStr

198

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbScoreTBFromName

Table

54.

The

extenders

that

support

QbScoreTBFromName

Image

Audio

Video

X

Returns

a

table

of

scores

for

an

image

column.

Each

score

is

a

number

that

expresses

how

closely

the

features

of

the

image

match

those

of

the

query

object.

The

QBIC

catalog

that

is

associated

with

the

specified

table

and

column

to

which

the

image

handle

belongs

is

used

to

calculate

the

score

of

each

image.

The

lower

the

score

for

any

image,

the

more

closely

the

features

of

that

image

match

those

of

the

query

object.

Notes:

1.

EEE

Only:

QbScoreTBFromName

is

not

supported

in

a

partitioned

database

environment.

Use

the

the

QbScoreFromStr

UDF

instead,

after

using

the

QbQueryGetString

API

to

get

the

query

string.

2.

QbScoreTBFromName

will

be

deprecated

in

the

future

for

non-partitioned

database

environments.

To

reuse

a

query,

you

should

use

the

QbQueryGetString

API

to

get

the

query

string

and

save

that

string

for

later

use

in

your

application.

Include

file

none

Syntax

Return

scores

for

all

cataloged

images

in

a

column

��

QbScoreTBFromName

(

queryName

,

table

,

column

)

��

Syntax

Return

scores

for

a

specific

number

of

cataloged

images

in

a

column

��

QbScoreTBFromName

(

queryName

,

table

,

column

,

maxReturns

)

��

Parameters

(data

type)

queryName

(VARCHAR(18))

The

name

of

the

query

object.

table

(CHAR(18))

The

qualified

name

of

the

table

that

contains

the

image

column.

You

can

use

an

unqualified

table

name

if

the

table

schema

is

the

same

as

the

user

ID

used

to

start

DB2

Extenders

services.

column

(CHAR(18))

The

name

of

the

image

column.

maxReturns

(INTEGER)

The

maximum

number

of

handles

that

the

table

of

results

is

to

return.

If

a

value

is

not

specified,

the

maximum

number

of

handles

that

are

returned

is

100.

Return

values

(data

type)

Table

of

image

handles

and

scores

for

the

images

in

the

column.

The

result

table

has

two

columns:

IMAGE_ID

(DB2Image)

which

contains

the

image

handles,

and

QbScoreTBFromName

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

199

SCORE

(DOUBLE)

which

contains

the

scores.

The

result

table

is

arranged

in

ascending

order

by

score.

The

score

can

range

from

0.0

to

a

very

large

number

approaching

infinity.

The

lower

the

score,

the

closer

the

feature

values

of

the

target

image

match

the

feature

values

specified

in

the

query.

A

score

of

0.0

means

an

exact

match.

A

score

of

-1

means

that

the

image

has

not

been

cataloged.

Examples

Compare

the

texture

of

the

images

in

a

table

column

to

the

texture

that

is

specified

in

a

query

object;

return

the

image

handles

and

their

scores:

SELECT

name,

description

INTO

:hvName,

:hvDesc

FROM

fabric

WHERE

CAST

(swatch_img

as

varchar(250))

IN

(SELECT

CAST

(image_id

as

varchar(250))

FROM

TABLE

(QbScoreTBFromName

'fstxtr',

'clothes.fabric',

'swatch_img'))

AS

T1));

QbScoreTBFromName

200

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbScoreTBFromStr

Table

55.

The

extenders

that

support

QbScoreTBFromStr

Image

Audio

Video

X

Returns

a

table

of

scores

from

an

image

column.

Each

score

is

a

number

that

expresses

how

closely

the

features

of

the

image

are

to

those

specified

in

a

query

string.

The

QBIC

catalog

that

is

associated

with

the

table

and

column

to

which

the

image

handle

belongs

is

used

to

calculate

the

score

of

each

image.

The

lower

the

score

for

an

image,

the

more

closely

the

features

of

that

image

match

those

of

the

query

string.

Include

file

none

Syntax

Return

scores

for

all

cataloged

images

in

a

column

��

QbScoreTBFromStr

(

query

,

table

,

column

)

��

Syntax

Return

scores

for

a

specific

number

of

cataloged

images

in

a

column

��

QbScoreTBFromStr

(

query

,

table

,

column

,

maxReturns

)

��

Parameters

(data

type)

query

(VARCHAR(1024))

The

query

string.

table

(CHAR

(18))

The

qualified

name

of

the

table

that

contains

the

image

column.

You

can

use

an

unqualified

table

name

if

the

table

schema

is

the

same

as

the

user

ID

used

to

start

DB2

Extenders

services.

column

(CHAR(18))

The

image

column

to

query.

maxReturns

(INTEGER)

The

maximum

number

of

handles

that

the

table

of

results

is

to

return.

If

a

value

is

not

specified,

the

maximum

number

of

image

handles

returned

is

100.

Return

values

(data

type)

Table

of

image

handles

and

scores

for

the

images

in

the

column.

The

result

table

has

two

columns:

IMAGE_ID

(DB2Image)

which

contains

the

image

handles,

and

SCORE

(DOUBLE)

which

contains

the

scores.

The

result

table

is

arranged

in

ascending

order

by

score.

The

score

can

range

from

0.0

to

a

very

large

number

approaching

infinity.

The

lower

the

score,

the

closer

the

feature

values

of

the

target

image

match

the

feature

values

specified

in

the

query.

A

score

of

0.0

means

an

exact

match.

A

score

of

-1

means

that

the

image

has

not

been

cataloged.

Examples

Find

the

ten

cataloged

images

in

a

table

column

whose

texture

is

closest

to

that

of

an

image

in

a

server

file:

QbScoreTBFromStr

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

201

SELECT

name,

description

FROM

fabric

WHERE

CAST

(swatch_img

as

varchar(250))

IN

(SELECT

CAST

(image_id

as

varchar(250))

FROM

TABLE

(QbScoreTBFromStr

(QbTextureFeatureClass

file=<server,"patterns/ptrn07.gif">'

'clothes.fabric',

'swatch_img',

10))

AS

T1));

QbScoreTBFromStr

202

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Replace

Table

56.

The

extenders

that

support

Replace

Image

Audio

Video

X

X

X

Updates

the

content

of

an

image,

audio,

or

video

that

is

stored

in

a

database,

and

updates

its

comment.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

Update

content

from

buffer

or

workstation

client

file

and

update

comment

��

Replace

(

handle

,

content

,

source_format

,

�

�

target_file

,

comment

)

��

Syntax

Update

content

from

server

file

and

update

comment

��

Replace

(

handle

,

source_file

,

source_format

,

stortype

,

�

�

comment

)

��

Syntax

Update

content

from

buffer

or

workstation

client

file

with

format

conversion

and

update

comment—image

only

��

Replace

(

handle

,

content

,

source_format

,

�

�

target_format

,

target_file

,

comment

)

��

Syntax

Update

content

from

server

file

with

format

conversion

and

update

comment—image

only

��

Replace

(

handle

,

source_file

,

source_format

,

�

�

target_format

,

target_file

,

comment

)

��

Syntax

Update

content

from

buffer

or

workstation

client

file

with

format

conversion

and

additional

changes

and

update

comment—image

only

��

Replace

(

handle

,

content

,

source_format

,

�

Replace

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

203

�

target_format

,

target_file

,

conversion_options

,

comment

)

��

Syntax

Update

content

from

server

file

with

format

conversion

and

additional

changes

and

update

comment—image

only

��

Replace

(

handle

,

source_file

,

source_format

,

�

�

target_format

,

conversion_options

,

target_file

,

comment

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

source_file

(VARCHAR(254))

The

name

of

the

file

that

contains

the

content

for

the

update

of

the

image,

audio,

or

video.

target_file

(VARCHAR(254))

The

name

of

the

file

that

contains

the

content

of

the

image,

audio,

or

video

to

be

updated.

create_target

(INTEGER)

A

value

that

indicates

whether

a

target

file

is

to

be

created

if

the

source

content

is

in

a

server

file.

The

value

can

be

0

or

1.

A

value

of

0

means

the

target

file

will

not

be

created

(in

effect,

the

retrieval

will

not

take

place).

A

value

of

1

means

that

the

target

file

will

be

created

(if

the

target

file

already

exists,

the

effect

of

this

value

is

to

overwrite

the

file).

If

the

source

content

is

a

BLOB,

the

target

file

is

always

created

(if

the

file

already

exists,

it

is

overwritten).

target_format

(VARCHAR(8))

The

format

of

the

image

after

retrieval.

The

format

of

the

source

image

will

be

converted

as

appropriate.

If

the

content

is

updated

with

format

conversion,

the

path

to

the

target

file

needs

to

be

specified

in

the

DB2IMAGEPATH

and

DB2MMPATH

environment

variables.

For

MPG1

format,

you

can

specify

MPG1,

mpg1,

MPEG1,

or

mpeg1.

For

MPG2

format,

you

can

specify

MPG2,

mpg2,

MPEG2,

or

mpeg2.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

for

update

of

the

image,

audio,

or

video.

The

host

variable

can

be

of

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

data

type

to

BLOB_LOCATOR

and

passes

the

LOB

locator

to

the

Replace

UDF.

source_format

(VARCHAR(8))

The

format

of

the

source

for

update

of

the

image,

audio,

or

video.

A

null

value

or

empty

string

can

be

specified,

or

for

image

only,

the

character

string

ASIS;

in

these

three

cases,

the

extender

attempts

to

determine

the

format

automatically.

For

MPG1

format,

you

can

specify

MPG1,

mpg1,

MPEG1,

or

mpeg1.

For

MPG2

format,

you

can

specify

MPG2,

mpg2,

MPEG2,

or

mpeg2.

comment

(VARCHAR(16384))

A

comment.

Replace

204

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

thumbnail

(LONG

VARCHAR

FOR

BIT

DATA)

A

thumbnail

of

the

image

or

video

frame

(image

and

video

only)

Return

values

(data

type)

The

handle

of

the

image,

audio,

or

video

to

be

updated

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO).

Examples

Update

Anita

Jones’s

image

in

the

picture

column

of

the

employee

table,

convert

the

format

of

the

image

from

BMP

to

GIF,

and

update

the

comment:

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

EXEC

SQL

END

DECLARE

SECTION;

hvStorageType

=

MMDB_STORAGE_TYPE_INTERNAL;

EXEC

SQL

UPDATE

EMPLOYEE

SET

PICTURE

=

REPLACE(PICTURE,

'/employee/newimg/ajones.bmp',

'BMP',

'GIF',

:hvStorageType,

'Anita''s

new

picture')

WHERE

NAME='Anita

Jones';

Replace

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

205

ReplaceA

Table

57.

The

extenders

that

support

ReplaceA

Image

Audio

Video

X

X

X

Updates

the

content

of

an

image,

audio,

or

video

with

user-supplied

attributes

that

are

stored

in

a

database,

and

updates

its

comment.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Include

file

Update

content

with

user-supplied

attributes

from

buffer

or

workstation

client

file

and

update

comment

��

ReplaceA

(

handle

,

content

,

target_file

,

�

�

comment

,

attrs

,

tracknames

,

instruments

,

�

�

format

,

compress_type

,

thumbnail

)

��

Syntax

Update

content

with

user-supplied

attributes

from

server

file

and

update

comment

��

ReplaceA

(

handle

,

source_file

,

stortype

,

comment

,

�

�

attrs

,

tracknames

,

instruments

,

format

,

�

�

compress_type

,

thumbnail

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

source_file

(VARCHAR(254))

The

name

of

the

file

that

contains

the

content

for

the

update

of

the

image,

audio,

or

video.

target_file

(VARCHAR(254))

The

name

of

the

file

that

contains

the

content

of

the

image,

audio,

or

video

to

be

updated.

content

(BLOB(2G)

AS

LOCATOR)

The

host

variable

that

contains

the

content

for

update

of

the

image,

audio,

or

video.

The

host

variable

can

be

of

type

BLOB,

BLOB_FILE,

or

BLOB_LOCATOR.

DB2

promotes

the

data

type

to

BLOB_LOCATOR

and

passes

the

LOB

locator

to

the

Replace

UDF.

ReplaceA

206

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

format

(VARCHAR(8))

The

format

of

the

source

for

update

of

the

image,

audio,

or

video.

A

null

value

or

empty

string

can

be

specified,

or

for

image

only,

the

character

string

ASIS;

in

these

three

cases,

the

extender

attempts

to

determine

the

format

automatically.

For

MPG1

format,

you

can

specify

MPG1,

mpg1,

MPEG1,

or

mpeg1.

For

MPG2

format,

you

can

specify

MPG2,

mpg2,

MPEG2,

or

mpeg2.

comment

(VARCHAR(16384))

A

comment.

attrs

(VARCHAR

(4096)

FOR

BIT

DATA)

The

attributes

of

the

image,

audio,

or

video

tracknames

(VARCHAR(1536))

The

names

of

all

tracks

in

the

MIDI

audio

(audio

only).

The

values

are

in

track

number

order

(for

example,

PIANO

TUNE;

TRUMPET

FANFARE).

If

a

track

does

not

have

a

name,

its

field

is

blank.

A

null

value

should

be

specified

for

audio

formats

other

than

MIDI.

instruments

(VARCHAR(1536))

The

names

of

all

instruments

in

the

MIDI

audio

(audio

only).

The

values

are

in

track

number

order

(for

example,

PIANO;

TRUMPET;

BASS).

If

a

track

does

not

have

an

associated

intrument,

its

field

is

blank.

A

null

value

should

be

specified

for

audio

formats

other

than

MIDI.

compress_type

(VARCHAR

(8))

The

compression

format

of

the

video

(video

only).

thumbnail

(VARCHAR

(16384)

FOR

BIT

DATA)

A

thumbnail

of

the

image

or

video

frame

(image

and

video

only)

Return

values

(data

type)

The

handle

of

the

image,

audio,

or

video

to

be

updated

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO).

Examples

Update

the

image

stored

for

Anita

Jones

that

is

in

the

picture

column

of

the

employee

table

and

update

its

comment.

The

source

image,

which

is

in

a

server

file,

has

a

user-defined

format,

a

height

of

640

pixels,

and

a

width

of

480

pixels.

EXEC

SQL

BEGIN

DECLARE

SECTION;

long

hvStorageType;

char

hvImgattrs[100];

EXEC

SQL

END

DECLARE

SECTION;

DB2IMAGEATTRS

*pimgattr;

hvStorageType=MMDB_STORAGE_TYPE_INTERNAL;

pimgattr

=

(DB2IMAGEATTRS

*)

hvImgattrs;

pimgattr→width=640;

pimgattr→height=480;

DBiPrepareAttrs(pimgattr);

EXEC

SQL

UPDATE

EMPLOYEE

SET

VIDEO=REPLACEA(

PICTURE,

'/employee/newimg/ajones.bmp',

:hvStorageType,

'A

new

image

for

Anita

Jones',

ReplaceA

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

207

:ImgAttrs,

'FormatI',

'')

WHERE

NAME='Anita

Jones';

ReplaceA

208

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

SamplingRate

Table

58.

The

extenders

that

support

SamplingRate

Image

Audio

Video

X

X

Returns

the

sampling

rate

of

a

WAVE

or

AIFF

audio,

or

of

an

audio

track

in

a

video,

in

number

of

samples

per

second.

Include

file

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

SamplingRate

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio

or

video.

Return

values

(data

type)

Sampling

rate

of

video

or

WAVE

or

AIFF

audio

(INTEGER).

Returns

a

null

value

for

audio

in

other

formats.

Examples

Get

the

file

name

of

all

audios

from

the

sound

column

of

the

employee

table

whose

sampling

rate

is

44.1

KHz:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvAud_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME

(SOUND)

INTO

:hvAud_fname

FROM

EMPLOYEE

WHERE

SAMPLINGRATE(SOUND)

=

44100;

SamplingRate

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

209

Size

Table

59.

The

extenders

that

support

Size

Image

Audio

Video

X

X

X

Returns

the

size

of

an

image,

audio,

or

video,

in

bytes.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

Size

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

Return

values

(data

type)

Size,

in

bytes,

of

image,

audio,

or

video

(INTEGER).

Examples

Get

the

file

name

of

all

images

in

the

picture

column

of

the

employee

table

whose

size

is

greater

than

310

KB:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(PICTURE)

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE

SIZE(PICTURE)

>

310000;

Size

210

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Thumbnail

Table

60.

The

extenders

that

support

Thumbnail

Image

Audio

Video

X

X

Returns

or

updates

a

thumbnail-size

version

of

an

image

or

video

frame

that

is

stored

in

a

database.

Include

file

image

dmbimage.h

video

dmbvideo.h

Syntax

Retrieve

a

thumbnail

��

Thumbnail

(

handle

)

��

Syntax

Update

a

thumbnail

��

Thumbnail

(

handle

,

new_thumbnail

)

��

Parameters

(data

type)

handle

(DB2IMAGE

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image

or

video.

new_thumbnail

(VARCHAR

(16384)

FOR

BIT

DATA)

Source

content

for

update

of

thumbnail

Return

values

(data

type)

For

retrieval,

the

content

of

the

retrieved

thumbnail

(VARCHAR(16384)

FOR

BIT

DATA)

for

update,

the

handle

of

the

image

or

video

(DB2IMAGE

or

DB2VIDEO).

Examples

Get

the

thumbnail

of

Anita

Jones’s

image

stored

in

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvThumbnail[16384];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

THUMBNAIL(PICTURE)

INTO

:hvThumbnail

FROM

EMPLOYEE

WHERE

NAME

=

'Anita

Jones';

Update

the

thumbnail

that

is

associated

with

Anita

Jones’s

video

in

the

employee

table:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvThumbnail[16384];

EXEC

SQL

END

DECLARE

SECTION;

/*

Create

thumbnail

and

*/

/*

store

in

hvThumbnail

*/

Thumbnail

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

211

EXEC

SQL

UPDATE

EMPLOYEE

SET

VIDEO=THUMBNAIL(

VIDEO,

:hvThumbnail)

WHERE

NAME='Anita

Jones';

Thumbnail

212

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

TicksPerQNote

Table

61.

The

extenders

that

support

TicksPerQNote

Image

Audio

Video

X

Returns

the

clock

speed

of

a

recorded

MIDI

audio,

in

ticks

per

quarter

note.

Include

file

dmbaudio.h

Syntax

��

TicksPerQNote

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio.

Return

values

(data

type)

Number

of

clock

ticks

per

quarter

note

of

MIDI

audio

(SMALLINT).

Returns

a

null

value

for

audio

in

other

formats.

Examples

Get

the

file

names

of

all

MIDI

audios

in

the

sound

column

of

the

employee

table

that

were

recorded

at

speeds

higher

than

200

clock

ticks

per

quarter

note:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvAud_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(SOUND)

INTO

:hvAud_fname

FROM

EMPLOYEE

WHERE

FORMAT(SOUND)='MIDI'

AND

TICKSPERQNOTE(SOUND)>200;

TicksPerQNotes

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

213

TicksPerSec

Table

62.

The

extenders

that

support

TicksPerSec

Image

Audio

Video

X

Returns

the

clock

speed

of

a

recorded

MIDI

audio,

in

ticks

per

second.

Include

file

dmbaudio.h

Syntax

��

TicksPerSec

(

handle

)

��

Parameters

(data

type)

handle

(DB2AUDIO)

Column

name

or

host

variable

that

contains

the

handle

of

the

audio.

Return

values

(data

type)

Number

of

clock

ticks

per

second

of

MIDI

audio

(SMALLINT).

Returns

a

null

value

for

audio

in

other

formats.

Examples

Get

the

file

names

of

all

MIDI

audios

in

the

sound

column

of

the

employee

table

that

were

recorded

at

speeds

less

than

50

clock

ticks

per

second:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvAud_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(SOUND)

INTO

:hvAud_fname

FROM

EMPLOYEE

WHERE

FORMAT(SOUND)='MIDI'

AND

TICKSPERSEC(SOUND)<50;

TicksPerSec

214

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Updater

Table

63.

The

extenders

that

support

Updater

Image

Audio

Video

X

X

X

Returns

the

user

ID

of

the

person

who

last

updated

an

image,

audio,

or

video

in

a

database

table.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

Updater

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

Return

values

(data

type)

User

ID

of

person

who

last

updated

the

image,

audio,

or

video

(CHAR(8))

Examples

Get

the

user

ID

of

the

person

who

last

updated

the

video

that

is

stored

in

the

video

column

of

the

employee

table

for

Robert

Smith:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvUpdater[30];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

UPDATER(VIDEO)

INTO

:hvUpdater

FROM

EMPLOYEE

WHERE

NAME='rsmith';

Updater

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

215

UpdateTime

Table

64.

The

extenders

that

support

UpdateTime

Image

Audio

Video

X

X

X

Returns

a

timestamp

that

indicates

when

an

image,

audio,

or

video

in

a

database

table

was

last

updated.

Include

file

image

dmbimage.h

audio

dmbaudio.h

video

dmbvideo.h

Syntax

��

UpdateTime

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE,

DB2AUDIO,

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image,

audio,

or

video.

Return

values

(data

type)

Timestamp

when

image,

audio,

or

video

was

last

updated

(TIMESTAMP)

Examples

Get

the

names

of

files

for

images

in

the

picture

column

of

the

employee

table

that

were

updated

in

the

last

2

days:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(PICTURE)

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE(CURRENT

TIMESTAMP

-

UPDATETIME(PICTURE))<

2;

UpdateTime

216

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Width

Table

65.

The

extenders

that

support

Width

Image

Audio

Video

X

X

Returns

the

width

in

pixels

of

an

image

or

video

frame.

Include

file

image

dmbimage.h

video

dmbvideo.h

Syntax

��

Width

(

handle

)

��

Parameters

(data

type)

handle

(DB2IMAGE

or

DB2VIDEO)

Column

name

or

host

variable

that

contains

the

handle

of

the

image

or

video.

Return

values

(data

type)

Width,

in

pixels

(INTEGER)

Examples

Get

the

file

name

of

all

images

in

the

picture

column

of

the

employee

table

that

are

narrower

than

300

pixels:

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

hvImg_fname[255];

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

SELECT

FILENAME(PICTURE)

INTO

:hvImg_fname

FROM

EMPLOYEE

WHERE

WIDTH(PICTURE)<300;

Width

Chapter

13.

User-defined

types

(distinct

types)

and

user-defined

functions

217

Width

218

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

14.

Application

programming

interfaces

This

chapter

gives

reference

information

for

the

DB2

Extender

administrative

APIs.

The

APIs

are

listed

in

alphabetical

order.

The

following

information

is

presented

for

each

API:

v

The

extender

that

provides

the

API

v

A

brief

description

v

The

authorization

needed

to

use

this

API

v

The

library

file

for

the

API

v

The

include

(header)

file

for

the

API

v

The

C

syntax

of

the

API

call

v

A

description

of

the

API

parameters

v

Values

returned

by

the

API

v

Examples

of

use

©

Copyright

IBM

Corp.

1998,

2001

219

DBaAdminGetInaccessibleFiles

Table

66.

The

extenders

that

support

DBaAdminGetInaccessibleFiles

Image

Audio

Video

X

Returns

the

names

of

inaccessible

files

that

are

referred

to

in

audio

columns

of

user

tables.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

audio

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

67.

The

names

of

the

inaccessible

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaAdminGetInaccessibleFiles(

char

*qualifier,

long

*count,

FILEREF

*(*fileList)

);

Parameters

qualifier

(in)

A

valid

user

ID

or

a

null

value.

If

a

user

ID

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

If

a

null

value

is

specified,

all

tables

in

the

current

database

server

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

inaccessible

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

SQL_ERROR

or

other

SQL

return

codes

Error

returned

from

DB2.

DBaAdminGetInaccessibleFiles

220

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

MMDB_RC_NO_AUTH

User

does

not

have

access

authority

to

the

required

tables.

MMDB_RC_WARN_NO_AUTH

User

does

not

have

access

authority

to

some

of

the

required

tables.

Examples

List

all

inaccessible

files

that

are

referred

to

in

audio

columns

of

tables

that

are

owned

by

user

ID

rsmith:

#include

<dmbaudio.h>

long

idx;

rc

=

DBaAdminGetInaccessibleFiles("rsmith",

&count,

&filelist);

DBaAdminGetInaccessibleFiles

Chapter

14.

Application

programming

interfaces

221

DBaAdminGetReferencedFiles

Table

68.

The

extenders

that

support

DBaAdminGetReferencedFiles

Image

Audio

Video

X

Returns

the

names

of

files

that

are

referred

to

in

audio

columns

of

user

tables.

If

a

file

is

inaccessible

(for

example,

its

file

name

cannot

be

resolved

using

environment

variable

specifications),

the

file

name

is

preceded

with

an

asterisk.

This

API

does

not

use

the

FILENAME

field

of

the

FILEREF

data

structure,

and

therefore

sets

it

to

NULL.

The

application

must

be

connected

to

a

database

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

audio

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

69.

The

names

of

reference

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaAdminGetReferencedFiles(

char

*qualifier,

long

*count,

FILEREF

*(*fileList)

);

Parameters

qualifier

(in)

A

valid

user

ID

or

a

null

value.

If

a

user

ID

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

If

a

null

value

is

specified,

all

tables

in

the

current

database

server

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

DBaAdminGetReferencedFiles

222

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

MMDB_RC_NO_AUTH

User

does

not

have

access

authority

to

the

required

tables.

MMDB_RC_WARN_NO_AUTH

User

does

not

have

access

authority

to

some

of

the

required

tables.

Examples

List

all

files

that

are

referred

to

in

audio

columns

in

tables

that

are

owned

by

ajones:

#include

<dmbaudio.h>

long

idx;

rc

=

DBaAdminGetReferencedFiles("ajones",

&count,

&fileList);

DBaAdminGetReferencedFiles

Chapter

14.

Application

programming

interfaces

223

DBaAdminIsFileReferenced

Table

70.

The

extenders

that

support

DBaAdminIsFileReferenced

Image

Audio

Video

X

Returns

a

list

of

audio

column

entries

in

user

tables

that

refer

to

a

specified

file.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

audio

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

71.

The

names

of

reference

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaAdminIsFileReferenced(

char

*qualifier,

char

*fileName,

long

*count,

FILEREF

*(*tableList)

);

Parameters

qualifier

(in)

A

valid

user

ID

or

a

null

value.

If

a

user

ID

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

If

a

null

value

is

specified,

all

tables

in

the

current

database

server

are

searched.

fileName

(in)

the

name

of

the

referred

to

file.

count

(out)

The

number

of

entries

in

the

output

list.

tableList

(out)

A

list

of

table

entries

that

refer

to

the

specified

file.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBaAdminIsFileReferenced

224

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

MMDB_RC_NO_AUTH

User

does

not

have

proper

authority

to

call

this

API.

Examples

List

the

entries

in

audio

columns

in

all

tables

in

the

current

database

server

that

refer

to

file

/audios/asmith.wav:

#include

<dmbaudio.h>

long

idx;

rc

=

DBaAdminIsFileReferenced(NULL,

"/audios/asmith.wav",

&count,

&tableList);

DBaAdminIsFileReferenced

Chapter

14.

Application

programming

interfaces

225

DBaDisableColumn

Table

72.

The

extenders

that

support

DBaDisableColumn

Image

Audio

Video

X

Disables

a

column

for

audio

(DB2Audio

data)

so

that

it

cannot

hold

audio

data.

The

contents

of

the

column

entries

are

set

to

NULL,

and

the

metadata

associated

with

this

column

is

dropped.

All

the

triggers

defined

by

the

audio

extender

for

this

column

are

also

dropped.

New

rows

can

be

inserted

into

the

table

that

contains

the

disabled

column,

and

the

new

rows

can

include

data

defined

with

type

DB2Audio,

but

there

is

no

metadata

(in

the

administrative

support

tables)

associated

with

the

new

rows.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Library

file

Table

73.

The

files

with

the

audio

data

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaDisableColumn(

char

*tableName,

char

*colName,

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

the

audio

column.

colName

(in)

The

name

of

the

audio

column.

DBaDisableColumn

226

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Disable

the

sound

column

in

the

employee

table

for

audio

(DB2Audio

data):

#include

<dmbaudio.h>

rc

=

DBaDisableColumn("employee",

"sound");

DBaDisableColumn

Chapter

14.

Application

programming

interfaces

227

DBaDisableServer

Table

74.

The

extenders

that

support

DBaDisableServer

Image

Audio

Video

X

Disables

a

database

server

for

audio

(DB2Audio

data)

so

that

it

cannot

hold

audio

data.

All

tables

in

the

database

server

that

is

defined

for

DB2Audio

are

also

disabled.

The

metadata

and

UDFs

that

are

defined

by

the

Audio

Extender

for

the

database

server

are

dropped.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS

Library

file

Table

75.

The

files

that

contain

audio

data

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaDisableServer(

);

Parameters

DBaDisableServer

has

no

parameters.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Disable

the

database

server

for

audio

(DB2Audio

data):

#include

<dmbaudio.h>

rc

=

DBaDisableServer();

DBaDisableServer

228

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBaDisableTable

Table

76.

The

extenders

that

support

DBaDisableTable

Image

Audio

Video

X

Disables

a

table

for

audio

(DB2Audio

data)

so

that

it

cannot

hold

audio

data.

All

columns

in

the

table

that

is

defined

for

DB2Audio

are

also

disabled.

Some

of

the

metadata

that

is

defined

by

the

Audio

Extender

for

the

table

is

dropped.

New

rows

can

be

inserted

into

tables

that

are

defined

with

type

DB2Audio,

but

there

is

no

metadata

(in

the

administrative

support

tables)

associated

with

the

new

rows.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Library

file

Table

77.

The

files

with

audio

data

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaDisableTable(

char

*tableName

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

an

audio

column.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

DBaDisableTable

Chapter

14.

Application

programming

interfaces

229

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Disable

the

employee

table

for

audio

(DB2Audio

data):

#include

<dmbaudio.h>

rc

=

DBaDisableTable("employee");

DBaDisableTable

230

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBaEnableColumn

Table

78.

The

extenders

that

support

DBaEnableColumn

Image

Audio

Video

X

Enables

a

column

for

audio

(DB2Audio

data).

The

API

defines

and

manages

relationships

between

this

column

and

the

metadata

tables.

Before

calling

this

API,

the

application

must

be

connected

to

a

database

server.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Use

privilege

is

also

required

on

table

spaces

and

buffer

pools

that

are

specified

in

the

API

parameters.

Library

file

Table

79.

The

files

with

audio

data

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaEnableColumn(

char

*tableName,

char

*colName,

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

the

audio

column.

colName

(in)

The

name

of

the

audio

column.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBaEnableColumn

Chapter

14.

Application

programming

interfaces

231

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_WARN_ALREADY_ENABLED

Column

is

already

enabled.

MMDB_RC_WRONG_SIGNATURE

Data

type

for

the

specified

column

is

incorrect.

User-defined

data

type

MMDBSYS.DB2AUDIO

is

expected.

MMDB_RC_COLUMN_DOESNOT_EXIST

Column

is

not

defined

in

the

specified

table.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_NOT_ENABLED

Database

server

or

table

is

not

enabled.

Examples

Enable

the

sound

column

in

the

employee

table

for

audio

(DB2Audio

data):

#include

<dmbaudio.h>

rc

=

DBaEnableColumn("employee",

"sound");

DBaEnableColumn

232

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBaEnableServer

Table

80.

The

extenders

that

support

DBaEnableServer

Image

Audio

Video

X

Enables

a

database

server

for

audio

(DB2Audio

data).

This

API

is

called

once

per

database

server.

It

defines

a

DB2

user-defined

type,

DB2Audio,

to

the

database

server.

It

also

creates

all

UDFs

that

manipulate

DB2Audio

data.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS

Library

file

Table

81.

The

files

with

audio

data

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaEnableServer(

char

*tableSpace,

char

*wlmNames,

char

*externalSecurity

);

Parameters

tableSpace

(in)

The

table

space

specification

for

administrative

support

tables.

The

specification

has

two

parts

as

follows:

v

The

name

of

the

table

space

for

administrative

support

tables

that

store

attribute

data.

The

table

space

name

must

be

the

name

of

a

table

space

that

is

defined

in

the

MMDBSYS

database.

If

you

do

not

specify

a

table

space

name,

DB2

creates

a

table

space

in

the

MMDBSYS

database

for

each

global

administrative

support

table.

v

For

the

table

space,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

For

details

about

these

blocks

and

index

options,

see

the

description

of

the

CREATE

INDEX

command

in

the

SQL

Reference.

wlmNames

(in)

WLM

environment

names.

A

maximum

of

two

can

be

specified;

at

least

one

must

be

specified.

If

only

one

is

specified,

then

all

extender

UDFs

run

in

DBaEnableServer

Chapter

14.

Application

programming

interfaces

233

that

WLM

environment.

If

two

WLM

environments

are

specified,

the

second

is

used

to

run

UDFs

that

store,

retrieve,

or

update

objects

(such

as

DB2AUDIO,

CONTENT,

and

REPLACE).

The

first

WLM

environment

is

used

for

attribute

retrieval

UDFs

(such

as

FORMAT

and

DURATION).

externalSecurity

Indicates

how

the

UDFs

interact

with

an

external

security

product,

such

as

RACF,

to

control

access

to

files.

UDFs

that

use

files

include

import

and

export

UDFs

such

as

DB2AUDIO

and

CONTENT,

they

do

not

include

attribute

retrieval

UDFs

such

as

FORMAT.

You

can

specify

EXTERNAL

SECURITY

USER

or

EXTERNAL

SECURITY

DB2.

If

you

specify

EXTERNAL

SECURITY

USER,

each

UDF

executes

as

if

has

the

user

ID

(that

is,

the

primary

authorization

ID)

of

the

process

that

invoked

it,

and

has

permissions

as

defined

for

that

user

ID

on

the

z/OS

server.

If

you

specify

EXTERNAL

SECURITY

DB2,

UDF

access

to

files

is

performed

using

the

authorization

ID

established

for

the

WLM

environment

that

runs

file-accessing

UDFs.

All

extender

UDF

invokers

have

access

to

the

same

files.

EXTERNAL

SECURITY

DB2

is

the

default.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_WARN_ALREADY_ENABLED

The

database

server

is

already

enabled.

MMDB_RC_NOT_MMDBSYS_DBNAME

The

table

space

does

not

exist

in

database

MMDBSYS.

MMDB_RC_NO_TABLESPACE_SPECIFICATION

The

table

space

is

not

specified.

MMDB_RC_CANNOT_SET_SQLID_TO_MMDBSYS

None

of

the

authorization

IDs

of

the

application

process

has

SYSADM

authority

and

none

of

the

authorization

IDs

of

the

application

process

is

MMDBSYS.

Examples

Enable

the

database

server

for

audio

(DB2Audio

data)

in

the

table

space

MYTS.

Specify

WLM

environment

DMBWLM1.

Use

defaults

for

the

index

table

space

and

external

security

specifications:

#include

<dmbaudio.h>

rc

=

DBaEnableServer("myts","dmbwlm1",NULL);

DBaEnableServer

234

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBaEnableTable

Table

82.

The

extenders

that

support

DBaEnableTable

Image

Audio

Video

X

Enables

a

table

for

audio

(DB2Audio

data).

This

API

is

called

once

per

table.

It

creates

metadata

tables

to

store

and

manage

attributes

for

audio

columns

in

a

table.

To

avoid

the

possibility

of

locking,

the

application

should

commit

transactions

before

calling

this

API.

Before

calling

this

API,

the

application

must

be

connected

to

a

database

server.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Use

privilege

is

also

required

on

table

spaces

and

buffer

pools

that

are

specified

in

the

API

parameters.

Library

file

Table

83.

The

files

with

audio

data

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaEnableTable(

char

*tableSpace,

char

*tableName

);

Parameters

tableSpace

(in)

The

table

space

specification

for

administrative

support

tables

and

LOB

data.

The

specification

has

four

parts

as

follows:

v

The

name

of

the

table

space

for

administrative

support

tables

that

store

attribute

data.

You

must

specify

this

table

space.

The

table

space

name

should

be

qualified

by

the

database

name;

the

table

space

should

be

in

the

same

database

as

the

user

table.

DBaEnableTable

Chapter

14.

Application

programming

interfaces

235

v

For

the

table

space

for

administrative

support

tables,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

v

The

name

of

the

table

space

for

LOB

data.

You

must

specify

this

table

space.

The

table

space

name

should

be

qualified

by

the

database

name;

the

table

space

should

be

in

the

same

database

as

the

user

table.

v

For

the

table

space

for

LOB

data,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

For

details

about

the

blocks

and

options

for

indexes,

see

the

description

of

the

CREATE

INDEX

command

in

the

SQL

Reference.

tableName

(in)

The

name

of

the

table

that

will

contain

an

audio

column.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_WARN_ALREADY_ENABLED

Table

is

already

enabled.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_TABLE_DOESNOT_EXIST

Table

does

not

exist.

Examples

Enable

the

employee

table

for

audio

(DB2Audio

data)

in

the

table

space

MYTS.

Specify

table

space

MYLOBTS

for

LOB

data

and

use

defaults

for

the

index

table

spaces:

#include

<dmbaudio.h>

rc

=

DBaEnableTable("myts,,mylobts",

"employee");

DBaEnableTable

236

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBaGetError

Table

84.

The

extenders

that

support

DBaGetError

Image

Audio

Video

X

Returns

a

description

of

the

last

error.

Call

this

API

after

any

other

API

returns

an

error

code.

Authorization

None.

Library

file

Table

85.

The

files

with

audio

data

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaGetError(

SQLINTEGER

*sqlcode,

char

*errorMsgText

);

Parameters

sqlcode

(out)

The

generic

SQL

error

code.

errorMsgText

(out)

The

SQL

error

message

text.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

Examples

Get

the

last

error,

storing

the

SQL

error

code

in

errCode

and

the

message

text

in

errMsg:

#include

<dmbaudio.h>

rc

=

DBaGetError(&errCode,

&errMsg);

DBaGetError

Chapter

14.

Application

programming

interfaces

237

DBaGetInaccessibleFiles

Table

86.

The

extenders

that

support

DBaGetInaccessibleFiles

Image

Audio

Video

X

Returns

the

names

of

inaccessible

files

that

are

referred

to

in

audio

columns

of

user

tables.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SELECT

privilege

on

enabled

audio

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

87.

The

files

with

audio

data

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaGetInaccessibleFiles(

char

*tableName,

long

*count,

FILEREF

*(*fileList)

);

Parameters

tableName

(in)

A

qualified,

unqualified,

or

null

table

name.

If

a

table

name

is

specified,

that

table

is

searched

for

references

to

inaccessible

files.

If

a

null

value

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

inaccessible

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server

before

calling

this

API.

DBaGetInaccessibleFiles

238

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

inaccessible

files

that

are

referred

to

in

audio

columns

in

the

employee

table:

long

idx;

#include

<dmbaudio.h>

rc

=

DBaGetInaccessibleFiles("employee",

&count,

&filelist);

DBaGetInaccessibleFiles

Chapter

14.

Application

programming

interfaces

239

DBaGetReferencedFiles

Table

88.

The

extenders

that

support

DBaGetReferencedFiles

Image

Audio

Video

X

Returns

the

names

of

files

that

are

referred

to

in

audio

columns

of

user

tables.

If

a

file

is

inaccessible

(for

example,

its

file

name

cannot

be

resolved

using

environment

variable

specifications),

the

file

name

is

preceded

with

an

asterisk.

This

API

does

not

use

the

FILENAME

field

of

the

FILEREF

data

structure,

and

therefore

sets

it

to

NULL.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure.

Authorization

SELECT

privilege

on

enabled

audio

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

89.

The

audio

data

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaGetReferencedFiles(

char

*tableName,

long

*count,

FILEREF

*(*fileList)

);

Parameters

tableName

(in)

A

qualified,

unqualified

,

or

null

table

name.

If

a

table

name

is

specified,

that

table

is

searched

for

references

to

files.

If

a

null

value

is

specified,

all

tables

owned

by

the

current

user

ID

database

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBaGetReferencedFiles

240

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

files

that

are

referred

to

in

audio

columns

in

the

employee

table:

#include

<dmbaudio.h>

long

idx;

rc

=

DBaGetReferencedFiles("employee",

&count,

&filelist);

DBaGetReferencedFiles

Chapter

14.

Application

programming

interfaces

241

DBaIsColumnEnabled

Table

90.

The

extenders

that

support

DBaIsColumnEnabled

Image

Audio

Video

X

Determines

whether

a

column

has

been

enabled

for

audio

(DB2Audio

data).

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

Authorization

SYSADM,

DBADM,

table

owner,

or

SELECT

privilege

on

the

user

table

Library

file

Table

91.

The

audio

data

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaIsColumnEnabled(

char

*tableName,

char

*colName,

short

*status

);

Parameters

tableName

(in)

A

qualified

or

unqualified

table

name.

colName

(in)

The

name

of

a

column.

status

(out)

Indicates

whether

the

column

is

enabled.

This

parameter

returns

a

numeric

value.

The

extender

also

returns

a

constant

that

indicates

the

status.

The

values

and

constants

are:

1

MMDB_IS_ENABLED

0

MMDB_IS_NOT_ENABLED

-1

MMDB_INVALID_DATATYPE

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

DBaIsColumnEnabled

242

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Examples

Determine

if

the

sound

column

in

the

employee

table

is

enabled

for

audio:

#include

<dmbaudio.h>

rc

=

DBaIsColumnEnabled("employee",

"sound",

&status);

DBaIsColumnEnabled

Chapter

14.

Application

programming

interfaces

243

DBaIsFileReferenced

Table

92.

The

extenders

that

support

DBaIsFileReferenced

Image

Audio

Video

X

Returns

a

list

of

table

entries

that

refer

to

a

specified

file.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SELECT

privilege

on

enabled

audio

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

93.

The

audio

data

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaIsFileReferenced(

char

*tableName,

char

*fileName,

long

*count,

FILEREF

*(*tableList)

);

Parameters

tableName

(in)

A

qualified,

unqualified

,

or

null

table

name.

If

a

table

name

is

specified,

that

table

is

searched

for

references

to

the

specified

file.

If

a

null

value

is

specified,

all

tables

owned

by

the

current

user

ID

are

searched.

fileName

(in)

The

name

of

the

referred

to

file.

count

(out)

The

number

of

entries

in

the

output

list.

tableList

(out)

A

list

of

table

entries

that

refer

to

the

specified

file.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBaIsFileReferenced

244

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

the

entries

in

audio

columns

of

the

employee

table

that

refer

to

file

/audios/ajones.wav:

#include

<dmbaudio.h>

long

idx;

rc

=

DBaIsFileReferenced(NULL,

"/audios/ajones.wav",

&count,

&tableList);

DBaIsFileReferenced

Chapter

14.

Application

programming

interfaces

245

DBaIsServerEnabled

Table

94.

The

extenders

that

support

DBaIsServerEnabled

Image

Audio

Video

X

Determines

whether

a

database

server

has

been

enabled

for

audio

(DB2Audio

data).

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

Authorization

None

Library

file

Table

95.

The

audio

data

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaIsServerEnabled(

short

*status

);

Parameters

status

(out)

Indicates

whether

the

database

server

is

enabled.

This

parameter

returns

a

numeric

value.

The

extender

also

returns

a

constant

that

indicates

the

status.

The

values

and

constants

are:

1

MMDB_IS_ENABLED

0

MMDB_IS_NOT_ENABLED

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Determine

if

the

database

server

is

enabled

for

audio:

#include

<dmbaudio.h>

rc

=

DBaIsServerEnabled(&status);

DBaIsServerEnabled

246

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBaIsTableEnabled

Table

96.

The

extenders

that

support

DBaIsTableEnabled

Image

Audio

Video

X

Determines

whether

a

table

has

been

enabled

for

audio

(DB2Audio

data).

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

Authorization

None

Library

file

Table

97.

The

audio

data

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

long

DBaIsTableEnabled(

char

*tableName,

short

*status

);

Parameters

tableName

(in)

A

table

name.

status

(out)

Indicates

whether

the

table

is

enabled.

This

parameter

returns

a

numeric

value.

The

extender

also

returns

a

constant

that

indicates

the

status.

The

values

and

constants

are:

1

MMDB_IS_ENABLED

0

MMDB_IS_NOT_ENABLED

-1

MMDB_INVALID_DATATYPE

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

DBaIsTableEnabled

Chapter

14.

Application

programming

interfaces

247

Examples

Determine

if

the

employee

table

is

enabled

for

audio

(DB2Audio

data):

#include

<dmbaudio.h>

rc

=

DBaIsTableEnabled("employee",

&status);

DBaIsTableEnabled

248

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBaPlay

Table

98.

The

extenders

that

support

DBaPlay

Image

Audio

Video

X

Opens

the

audio

player

on

the

client

and

plays

an

audio

clip.

The

clip

can

be

stored

in

an

audio

column

or

an

external

file:

v

If

the

audio

clip

is

stored

in

an

external

file,

you

can

pass

either

the

name

of

the

file

or

the

audio

handle

to

this

API.

The

API

uses

the

client

environment

variable

DB2AUDIOPATH

to

resolve

the

file

location.

The

file

must

be

accessible

from

the

client.

v

If

the

audio

clip

is

stored

in

a

column,

you

must

pass

the

audio

handle

to

the

API.

The

application

must

be

connected

to

the

database

server

and

have

SELECT

privilege

on

the

administrative

support

tables

for

the

user

table

in

which

the

audio

clip

is

stored.

If

the

audio

is

stored

in

a

column,

the

extender

creates

a

temporary

file

and

copies

the

content

of

the

object

from

the

column

to

the

file.

The

extender

might

also

create

a

temporary

file

if

the

audio

is

stored

in

an

external

file

and

its

relative

filename

cannot

be

resolved

using

the

values

in

environment

variables,

or

if

the

file

is

not

accessible

on

the

client

machine.

The

temporary

file

is

created

in

the

directory

that

is

specified

in

the

DB2AUDIOTEMP

environment

variable.

The

extender

then

plays

the

audio

from

the

temporary

file.

Authorization

Select

authority

on

the

user

table,

if

playing

an

audio

clip

from

a

column.

Library

file

Table

99.

The

audio

data

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

Play

an

audio

stored

in

a

column

long

DBaPlay(

char

*playerName,

MMDB_PLAY_HANDLE,

DB2Audio

*audioHandle,

waitFlag

);

Syntax

Play

an

audio

stored

as

a

file

DBaPlay

Chapter

14.

Application

programming

interfaces

249

long

DBaPlay(

char

*playerName,

MMDB_PLAY_FILE,

char

*fileName,

waitFlag

);

Parameters

playerName

(in)

The

name

of

the

audio

player.

If

set

to

NULL,

the

default

audio

player

specified

by

the

DB2AUDIOPLAYER

environment

variable

is

used.

MMDB_PLAY_HANDLE

(in)

A

constant

that

indicates

the

audio

is

stored

as

a

BLOB.

MMDB_PLAY_FILE

(in)

A

constant

that

indicates

the

audio

is

stored

as

a

file

that

is

accessible

from

the

client.

audioHandle

(in)

The

handle

of

the

audio.

This

parameter

must

be

passed

when

you

play

an

audio

clip

in

a

column.

If

the

audio

handle

represents

an

external

file,

the

client

environment

variable

DB2VIDEOPATH

is

used

to

resolve

the

file

location.

fileName

(in)

The

name

of

the

file

that

contains

the

audio.

waitFlag

(in)

A

constant

that

indicates

whether

your

program

waits

for

the

user

to

close

the

player

before

continuing.

MMDB_PLAY_WAIT

runs

the

player

in

the

same

thread

as

your

application.

MMDB_PLAY_NO_WAIT

runs

the

player

in

a

separate

thread.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Play

the

audio

that

is

identified

by

the

audioHandle.

Run

the

default

player

in

the

same

thread

as

the

application:

#include

<dmbaudio.h>

rc

=

DBaPlay(NULL,

MMDB_PLAY_HANDLE,

audioHandle,

MMDB_PLAY_WAIT);

DBaPlay

250

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBaPrepareAttrs

Table

100.

The

extenders

that

support

DBaPrepareAttrs

Image

Audio

Video

X

Prepares

user-supplied

audio

attributes.

This

API

is

used

when

an

audio

object

with

user-supplied

attributes

is

stored

or

updated.

The

UDF

code

that

runs

on

the

server

always

expects

data

in

“big

endian”format,

a

format

that

is

used

by

most

UNIX

and

z/OS

platforms.

If

an

audio

object

is

stored

or

updated

in

“little

endian”

format,

that

is,

from

a

non-UNIX

client,

the

DBaPrepare

API

must

be

used

before

the

store

or

update

request

is

made.

Authorization

None

Library

file

Table

101.

The

audio

data

files

z/OS

AIX

Windows

Solaris

DMBAUDIO

libdmbaudio.a

dmbaudio.lib

libdmbaudio.so

Include

file

dmbaudio.h

Syntax

void

DBaPrepareAttrs(

MMDBAudioAttrs

*audAttr

);

Parameters

audAttr

(in)

The

user-supplied

attributes

of

the

audio.

Examples

Prepare

user-supplied

audio

attributes:

#include

<dmbaudio.h>

DBaPrepareAttrs(&imgattr);

DBaPrepareAttrs

Chapter

14.

Application

programming

interfaces

251

DBiAdminGetInaccessibleFiles

Table

102.

The

extenders

that

support

DBiAdminGetInaccessibleFiles

Image

Audio

Video

X

Returns

the

names

of

inaccessible

files

that

are

referred

to

in

image

columns

of

user

tables.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

image

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

103.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiAdminGetInaccessibleFiles(

char

*qualifier,

long

*count,

FILEREF

*(*fileList)

);

Parameters

qualifier

(in)

A

valid

user

ID

or

a

null

value.

If

a

user

ID

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

If

a

null

value

is

specified,

all

tables

in

the

current

database

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

inaccessible

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

DBiAdminGetInaccessibleFiles

252

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NO_AUTH

User

does

not

have

access

authority

to

the

required

tables.

MMDB_RC_WARN_NO_AUTH

User

does

not

have

access

authority

to

some

of

the

required

tables.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

inaccessible

files

that

are

referred

to

in

image

columns

of

tables

that

are

owned

by

user

ID

rjones:

#include

<dmbimage.h>

long

idx;

rc

=

DBiAdminGetInaccessibleFiles

("rjones",

&count,

&filelist);

DBiAdminGetInaccessibleFiles

Chapter

14.

Application

programming

interfaces

253

DBiAdminGetReferencedFiles

Table

104.

The

extenders

that

support

DBiAdminGetReferencedFiles

Image

Audio

Video

X

Returns

the

names

of

files

that

are

referred

to

in

image

columns

of

user

tables.

If

a

file

is

inaccessible

(for

example,

its

file

name

cannot

be

resolved

using

environment

variable

specifications),

the

file

name

is

preceded

with

an

asterisk.

This

API

does

not

use

the

FILENAME

field

of

the

FILEREF

data

structure,

and

therefore

sets

it

to

NULL.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

image

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

105.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiAdminGetReferencedFiles(

char

*qualifier,

long

*count,

FILEREF

*(*fileList)

);

Parameters

qualifier

(in)

A

valid

user

ID

or

a

null

value.

If

a

user

ID

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

If

a

null

value

is

specified,

all

tables

in

the

current

database

server

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBiAdminGetReferencedFiles

254

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_NO_AUTH

User

does

not

have

access

authority

to

the

required

tables.

MMDB_RC_WARN_NO_AUTH

User

does

not

have

access

authority

to

some

of

the

required

tables.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

files

that

are

referred

to

in

image

columns

in

tables

that

are

owned

by

ajones:

#include

<dmbimage.h>

long

idx;

rc

=

DBiAdminGetReferencedFiles("ajones",

&count,

&filelist);

DBiAdminGetReferencedFiles

Chapter

14.

Application

programming

interfaces

255

DBiAdminIsFileReferenced

Table

106.

The

extenders

that

support

DBiAdminIsFileReferenced

Image

Audio

Video

X

Returns

a

list

of

image

column

entries

in

user

tables

that

refer

to

a

specified

file.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

image

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

107.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiAdminIsFileReferenced(

char

*qualifier,

char

*fileName,

long

*count,

FILEREF

*(*tableList)

);

Parameters

qualifier

(in)

A

valid

user

ID

or

a

null

value.

If

a

user

ID

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

If

a

null

value

is

specified,

all

tables

in

the

current

database

server

are

searched.

fileName

(in)

The

name

of

the

referred

to

file.

count

(out)

The

number

of

entries

in

the

output

list.

tableList

(out)

A

list

of

table

entries

that

refer

to

the

specified

file.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBiAdminIsFileReferenced

256

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_NO_AUTH

User

does

not

have

proper

authority

to

call

this

API.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

the

entries

in

image

columns

in

all

tables

in

the

current

database

that

refer

to

file

/images/asmith.bmp:

#include

<dmbimage.h>

long

idx;

rc

=

DBiAdminIsFileReferenced(NULL,

"/images/asmith.bmp",

&count,

&tableList);

DBiAdminIsFileReferenced

Chapter

14.

Application

programming

interfaces

257

DBiBrowse

Table

108.

The

extenders

that

support

DBiBrowse

Image

Audio

Video

X

Opens

the

image

browser

on

the

client

and

displays

an

image.

The

image

can

be

stored

in

an

image

column

or

an

external

file:

v

If

the

image

is

stored

in

an

external

file,

you

can

pass

either

the

name

of

the

file

or

the

image

handle

to

this

API.

The

API

uses

the

client

environment

variable

DB2IMAGEPATH

to

resolve

the

file

location.

The

file

must

be

accessible

from

the

client

workstation.

v

If

the

image

is

stored

in

a

column,

you

must

pass

the

image

handle

to

the

API.

The

application

must

be

connected

to

the

database

server

and

have

SELECT

privilege

on

the

administrative

support

tables

for

the

user

table

in

which

the

image

is

stored.

If

the

browser

can

not

directly

access

the

image,

the

extender

creates

a

temporary

file

in

the

directory

that

is

specified

in

the

DB2IMAGETEMP

environment

variable.

The

extender

then

displays

the

image

from

the

temporary

file.

Authorization

Select

authority

on

the

user

table,

if

browsing

an

image

from

a

column.

Library

file

Table

109.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

Browse

an

image

stored

in

a

column

long

DBiBrowse(

char

*browserName,

MMDB_PLAY_HANDLE,

DB2Image

*imageHandle,

waitFlag

);

Syntax

Browse

an

image

stored

as

a

file

long

DBiBrowse(

char

*browserName,

MMDB_PLAY_FILE,

char

*fileName,

waitFlag);

DBiBrowse

258

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Parameters

browserName

(in)

The

name

of

the

image

browser.

If

set

to

NULL,

the

default

image

browser

specified

by

the

DB2IMAGEBROWSER

environment

variable

is

used.

MMDB_PLAY_HANDLE

(in)

A

constant

that

indicates

the

image

is

stored

as

a

BLOB.

MMDB_PLAY_FILE

(in)

A

constant

that

indicates

the

image

is

stored

as

a

file

that

is

accessible

from

the

client.

imageHandle

(in)

The

handle

of

the

image.

This

parameter

must

be

passed

when

you

browse

an

image

in

a

column.

If

the

image

handle

represents

an

external

file,

the

client

environment

variable

DB2IMAGEPATH

is

used

to

resolve

the

file

location.

fileName

(in)

The

name

of

the

file

that

contains

the

image.

waitFlag

(in)

A

constant

that

indicates

whether

your

program

waits

for

the

user

to

close

the

browser

before

continuing.

MMDB_PLAY_WAIT

runs

the

browser

in

the

same

thread

as

your

application.

MMDB_PLAY_NO_WAIT

runs

the

browser

in

a

separate

thread.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Display

the

image

that

is

identified

by

the

imageHandle.

Run

the

default

browser

in

the

same

thread

as

the

application:

#include

<dmbimage.h>

rc

=

DBiBrowse(NULL,

MMDB_PLAY_HANDLE,

imageHandle,

MMDB_PLAY_WAIT);

DBiBrowse

Chapter

14.

Application

programming

interfaces

259

DBiDisableColumn

Table

110.

The

extenders

that

support

DBiDisableColumn

Image

Audio

Video

X

Disables

a

column

for

images

(DB2Image

data)

so

that

it

cannot

hold

image

data.

The

contents

of

the

column

entries

are

set

to

NULL,

and

the

metadata

associated

with

this

column

is

dropped.

The

QBIC

catalog

that

is

associated

with

this

column

is

also

deleted.

All

the

triggers

defined

by

the

image

extender

for

this

column

are

also

dropped.

New

rows

can

be

inserted

into

the

table

that

contains

the

disabled

column,

and

the

new

rows

can

include

data

defined

with

type

DB2Image,

but

there

is

no

metadata

(in

the

administrative

support

tables)

associated

with

the

new

rows.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Library

file

Table

111.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiDisableColumn(

char

*tableName,

char

*colName,

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

the

image

column.

colName

(in)

The

name

of

the

image

column.

DBiDisableColumn

260

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Disable

the

picture

column

in

the

employee

table

for

images

(DB2Image

data):

#include

<dmbimage.h>

rc

=

DBiDisableColumn("employee",

"picture");

DBiDisableColumn

Chapter

14.

Application

programming

interfaces

261

DBiDisableServer

Table

112.

The

extenders

that

support

DBiDisableServer

Image

Audio

Video

X

Disables

a

database

server

for

images

(DB2Image

data)

so

that

it

cannot

hold

image

data.

All

tables

in

the

database

server

that

is

defined

for

DB2Image

are

also

disabled.

The

metadata

and

UDFs

that

are

defined

by

the

Image

Extender

for

the

database

server

are

dropped.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS

Library

file

Table

113.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiDisableServer(

);

Parameters

DBiDisableServer

has

no

parameters.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Disable

the

database

server

for

images

(DB2Image

data):

#include

<dmbimage.h>

rc

=

DBiDisableServer();

DBiDisableServer

262

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBiDisableTable

Table

114.

The

extenders

that

support

DBiDisableTable

Image

Audio

Video

X

Disables

a

table

for

images

(DB2Image

data)

so

that

it

cannot

hold

image

data.

All

columns

in

the

table

that

is

defined

for

DB2Image

are

also

disabled.

Some

of

the

metadata

that

is

defined

by

the

Image

Extender

for

the

table

is

dropped.

All

QBIC

catalogs

that

are

associated

with

the

image

columns

in

the

table

are

also

deleted.

New

rows

can

be

inserted

into

tables

that

are

defined

with

type

DB2Image,

but

there

is

no

metadata

(in

the

administrative

support

tables)

associated

with

the

new

rows.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Library

file

Table

115.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiDisableTable(

char

*tableName

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

an

image

column.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

DBiDisableTable

Chapter

14.

Application

programming

interfaces

263

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Disable

the

employee

table

for

images

(DB2Image

data):

#include

<dmbimage.h>

rc

=

DBiDisableTable("employee");

DBiDisableTable

264

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBiEnableColumn

Table

116.

The

extenders

that

support

DBiEnableColumn

Image

Audio

Video

X

Enables

a

column

for

images

(DB2Image

data).

The

API

defines

and

manages

relationships

between

this

column

and

the

metadata

tables.

Before

calling

this

API,

the

application

must

be

connected

to

a

database

server.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

it

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Library

file

Table

117.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiEnableColumn(

char

*tableName,

char

*colName,

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

the

image

column.

colName

(in)

The

name

of

the

image

column.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

DBiEnableColumn

Chapter

14.

Application

programming

interfaces

265

MMDB_WARN_ALREADY_ENABLED

Column

is

already

enabled.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_WRONG_SIGNATURE

Datatype

for

the

specified

column

is

incorrect.

User-defined

type

MMDBSYS.DB2IMAGE

is

expected.

MMDB_RC_COLUMN_DOESNOT_EXIST

Column

is

not

defined

in

the

specified

table.

MMDB_RC_NOT_ENABLED

Database

server

or

table

is

not

enabled.

Examples

Enable

the

picture

column

in

the

employee

table

for

images:

#include

<dmbimage.h>

rc

=

DBiEnableColumn("employee",

"picture");

DBiEnableColumn

266

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBiEnableServer

Table

118.

The

extenders

that

support

DBiEnableServer

Image

Audio

Video

X

Enables

a

database

server

for

images

(DB2Image

data).

This

API

is

called

once

per

database

server.

It

defines

a

DB2

user-defined

type,

DB2Image,

to

the

database

server.

It

also

creates

all

UDFs

that

manipulate

DB2Image

data.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

it

own

unit

of

work.

Authorization

v

SYSADM

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS

Library

file

Table

119.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiEnableServer(

char

*tableSpace,

char

*wlmNames,

char

*externalSecurity

);

Parameters

tableSpace

(in)

The

table

space

specification

for

administrative

support

tables.

The

specification

has

two

parts

as

follows:

v

The

name

of

the

table

space

for

administrative

support

tables

that

store

attribute

data.

The

table

space

name

must

be

the

name

of

a

table

space

that

is

defined

in

the

MMDBSYS

database.

If

you

do

not

specify

a

table

space

name,

DB2

creates

a

table

space

in

the

MMDBSYS

database

for

each

global

administrative

support

table.

v

For

the

table

space,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

For

details

about

these

blocks

and

index

options,

see

the

description

of

the

CREATE

INDEX

command

in

the

SQL

Reference.

wlmNames

(in)

WLM

environment

names.

A

maximum

of

two

can

be

specified;

at

least

one

must

be

specified.

If

only

one

is

specified,

then

all

extender

UDFs

run

in

that

WLM

environment.

If

two

WLM

environments

are

specified,

the

second

DBiEnableServer

Chapter

14.

Application

programming

interfaces

267

is

used

to

run

UDFs

that

import

or

export

objects

(such

as

DB2IMAGE,

CONTENT,

and

REPLACE).

The

first

WLM

environment

is

used

for

attribute

retrieval

UDFs

(such

as

WIDTH,

HEIGHT,

and

SIZE).

externalSecurity

Indicates

how

the

UDFs

interact

with

an

external

security

product,

such

as

RACF,

to

control

access

to

files.

UDFs

that

use

files

include

import

and

export

UDFs

such

as

DB2IMAGE

and

CONTENT,

they

do

not

include

attribute

retrieval

UDFs

such

as

FORMAT.

You

can

specify

EXTERNAL

SECURITY

USER

or

EXTERNAL

SECURITY

DB2.

If

you

specify

EXTERNAL

SECURITY

USER,

each

UDF

executes

as

if

has

the

user

ID

(that

is,

the

primary

authorization

ID)

of

the

process

that

invoked

it,

and

has

permissions

as

defined

for

that

user

ID

on

the

z/OS

server.

If

you

specify

EXTERNAL

SECURITY

DB2,

UDF

access

to

files

is

performed

using

the

authorization

ID

established

for

the

WLM

environment

that

runs

file-accessing

UDFs.

All

extender

UDF

invokers

have

access

to

the

same

files.

EXTERNAL

SECURITY

DB2

is

the

default.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_WARN_ALREADY_ENABLED

The

database

server

is

already

enabled.

MMDB_RC_NOT_MMDBSYS_DBNAME

The

table

space

does

not

exist

in

database

MMDBSYS.

MMDB_RC_NO_TABLESPACE_SPECIFICATION

The

table

space

is

not

specified.

MMDB_RC_CANNOT_SET_SQLID_TO_MMDBSYS

None

of

the

authorization

IDs

of

the

application

process

has

SYSADM

authority,

and

none

of

the

authorization

IDs

of

the

application

process

is

MMDBSYS.

Examples

Enable

the

database

server

for

images

(DB2Image

data)

in

the

table

space

MYTS.

Specify

WLM

environment

DMBWLM1.

Use

defaults

for

the

index

table

space

and

external

security

specifications:

#include

<dmbimage.h>

rc

=

DBiEnableServer("myts","dmbwlm1",NULL);

DBiEnableServer

268

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBiEnableTable

Table

120.

The

extenders

that

support

DBiEnableTable

Image

Audio

Video

X

Enables

a

table

for

images

(DB2Image

data).

This

API

is

called

once

per

table.

It

creates

metadata

tables

to

store

and

manage

attributes

for

image

columns

in

a

table.

To

avoid

the

possibility

of

locking,

the

application

should

commit

transactions

before

calling

this

API.

Before

calling

this

API,

the

application

must

be

connected

to

a

database

server.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Use

privilege

is

also

required

on

table

spaces

and

buffer

pools

that

are

specified

in

the

API

parameters.

Library

file

Table

121.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiEnableTable(

char

*tableSpace,

char

*tableName

);

Parameters

tableSpace

(in)

The

table

space

specification

for

administrative

support

tables

and

LOB

data.

The

specification

has

four

parts

as

follows:

v

The

name

of

the

table

space

for

administrative

support

tables

that

store

attribute

data.

You

must

specify

this

table

space.

The

table

space

name

DBiEnableTable

Chapter

14.

Application

programming

interfaces

269

should

be

qualified

by

the

database

name;

the

table

space

should

be

in

the

same

database

as

the

user

table.

A

32

KB

page

buffer

pool

for

the

table

space

isrequired.

v

For

the

table

space

for

administrative

support

tables,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

v

The

name

of

the

table

space

for

LOB

data.

You

must

specify

this

table

space.

The

table

space

name

should

be

qualified

by

the

database

name;

the

table

space

should

be

in

the

same

database

as

the

user

table.

v

For

the

table

space

for

LOB

data,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

For

details

about

the

blocks

and

options

for

indexes,

see

the

description

of

the

CREATE

INDEX

command

in

the

SQL

Reference.

tableName

(in)

The

name

of

the

table

that

will

contain

an

image

column.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_WARN_ALREADY_ENABLED

Table

is

already

enabled.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_TABLE_DOESNOT_EXIST

Table

does

not

exist.

Examples

Enable

the

employee

table

for

images

(DB2Image

data)

in

the

table

space

MYTS.

Specify

table

space

MYLOBTS

for

LOB

data

and

use

defaults

for

the

index

table

spaces:

#include

<dmbimage.h>

rc

=

DBiEnableTable("myts,,mylobts",

"employee");

DBiEnableTable

270

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBiGetError

Table

122.

The

extenders

that

support

DBiGetError

Image

Audio

Video

X

Returns

a

description

of

the

last

error.

Call

this

API

after

any

other

API

returns

an

error

code.

Authorization

None.

Library

file

Table

123.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiGetError(

SQLINTEGER

*sqlcode,

char

*errorMsgText

);

Parameters

sqlcode

(out)

The

generic

SQL

error

code.

errorMsgText

(out)

The

SQL

error

message

text.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

Examples

Get

the

last

error,

storing

the

SQL

error

code

in

errCode

and

the

message

text

in

errMsg:

#include

<dmbimage.h>

rc

=

DBiGetError(&errCode,

&errMsg);

DBiGetError

Chapter

14.

Application

programming

interfaces

271

DBiGetInaccessibleFiles

Table

124.

The

extenders

that

support

DBiGetInaccessibleFiles

Image

Audio

Video

X

Returns

the

names

of

inaccessible

files

that

are

referred

to

in

image

columns

of

user

tables.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SELECT

privilege

on

enabled

image

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

125.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiGetInaccessibleFiles(

char

*tableName,

long

*count,

FILEREF

*(*fileList)

);

Parameters

tableName

(in)

A

qualified,

unqualified,

or

null

table

name.

If

a

table

name

is

specified,

that

table

is

searched

for

references

to

inaccessible

files.

If

a

null

value

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

inaccessible

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

DBiGetInaccessibleFiles

272

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

inaccessible

files

that

are

referred

to

in

image

columns

in

the

employee

table:

#include

<dmbimage.h>

long

idx;

rc

=

DBiGetInaccessibleFiles("employee",

&count,

&filelist);

DBiGetInaccessibleFiles

Chapter

14.

Application

programming

interfaces

273

DBiGetReferencedFiles

Table

126.

The

extenders

that

support

DBiGetReferencedFiles

Image

Audio

Video

X

Returns

the

names

of

files

that

are

referred

to

in

image

columns

of

user

tables.

If

a

file

is

inaccessible

(for

example,

its

file

name

cannot

be

resolved

using

environment

variable

specifications),

the

file

name

is

preceded

with

an

asterisk.

This

API

does

not

use

the

FILENAME

field

of

the

FILEREF

data

structure,

and

therefore

sets

it

to

NULL.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure.

Authorization

SELECT

privilege

on

enabled

image

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

127.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiGetReferencedFiles(

char

*tableName,

long

*count,

FILEREF

*(*fileList)

);

Parameters

tableName

(in)

A

qualified,

unqualified

,

or

null

table

name.

If

a

table

name

is

specified,

that

table

is

searched

for

references

to

files.

If

a

null

value

is

specified,

all

tables

owned

by

the

current

user

ID

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBiGetReferencedFiles

274

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

files

that

are

referred

to

in

image

columns

in

the

employee

table:

#include

<dmbimage.h>

long

idx;

rc

=

DBiGetReferencedFiles("employee",

&count,

&filelist);

DBiGetReferencedFiles

Chapter

14.

Application

programming

interfaces

275

DBiIsColumnEnabled

Table

128.

The

extenders

that

support

DBiIsColumnEnabled

Image

Audio

Video

X

Determines

whether

a

column

has

been

enabled

for

images

(DB2Image

data).

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

Authorization

SYSADM,

DBADM,

table

owner,

or

SELECT

privilege

on

the

user

table

Library

file

Table

129.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiIsColumnEnabled(

char

*tableName,

char

*colName,

short

*status

);

Parameters

tableName

(in)

A

qualified

or

unqualified

table

name.

colName

(in)

The

name

of

a

column.

status

(out)

Indicates

whether

the

column

is

enabled.

This

parameter

returns

a

numeric

value.

The

extender

also

returns

a

constant

that

indicates

the

status.

The

values

and

constants

are:

1

MMDB_IS_ENABLED

0

MMDB_IS_NOT_ENABLED

-1

MMDB_INVALID_DATATYPE

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_WARN_ALREADY_ENABLED

Column

is

already

enabled.

DBiIsColumnEnabled

276

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Determine

if

the

picture

column

in

the

employee

table

is

enabled

for

images:

#include

<dmbimage.h>

rc

=

DBiIsColumnEnabled("employee",

"picture",

&status);

DBiIsColumnEnabled

Chapter

14.

Application

programming

interfaces

277

DBiIsFileReferenced

Table

130.

The

extenders

that

support

DBiIsFileReferenced

Image

Audio

Video

X

Returns

a

list

of

table

entries

in

image

columns

that

refer

to

a

specified

file.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SELECT

privilege

on

enabled

image

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

131.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiIsFileReferenced(

char

*tableName,

char

*fileName,

long

*count,

FILEREF

*(*tableList)

);

Parameters

tableName

(in)

A

qualified,

unqualified

,

or

null

table

name.

If

a

table

name

is

specified,

that

table

is

searched

for

references

to

the

specified

file.

If

a

null

value

is

specified,

all

tables

owned

by

the

current

user

ID

are

searched.

fileName

(in)

The

name

of

the

referred

to

file.

count

(out)

The

number

of

entries

in

the

output

list

tableList

(out)

A

list

of

table

entries

that

refer

to

the

specified

file

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBiIsFileReferenced

278

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

the

entries

in

image

columns

of

the

employee

table

that

refer

to

file

/images/ajones.bmp:

#include

<dmbimage.h>

long

idx;

rc

=

DBiIsFileReferenced(NULL,

"/images/ajones.bmp",

&count,

&tableList);

DBiIsFileReferenced

Chapter

14.

Application

programming

interfaces

279

DBiIsServerEnabled

Table

132.

The

extenders

that

support

DBiIsServerEnabled

Image

Audio

Video

X

Determines

whether

a

database

server

has

been

enabled

for

images

(DB2Image

data).

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

Authorization

None

Library

file

Table

133.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiIsServerEnabled(

short

*status

);

Parameters

status

(out)

Indicates

whether

the

database

server

is

enabled.

This

parameter

returns

a

numeric

value.

The

extender

also

returns

a

constant

that

indicates

the

status.

The

values

and

constants

are:

1

MMDB_IS_ENABLED

0

MMDB_IS_NOT_ENABLED

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Determine

if

the

database

server

is

enabled

for

images:

#include

<dmbimage.h>

rc

=

DBiIsServerEnabled(&status);

DBiIsServerEnabled

280

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBiIsTableEnabled

Table

134.

The

extenders

that

support

DBiIsTableEnabled

Image

Audio

Video

X

Determines

whether

a

table

has

been

enabled

for

images

(DB2Image

data).

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

Authorization

None

Library

file

Table

135.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

long

DBiIsTableEnabled(

char

*tableName,

short

*status

);

Parameters

tableName

(in)

A

table

name.

status

(out)

Indicates

whether

the

table

is

enabled.

This

parameter

returns

a

numeric

value.

The

extender

also

returns

a

constant

that

indicates

the

status.

The

values

and

constants

are:

1

MMDB_IS_ENABLED

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Determine

if

the

employee

table

is

enabled

for

images:

DBiIsTableEnabled

Chapter

14.

Application

programming

interfaces

281

#include

<dmbimage.h>

rc

=

DBiIsTableEnabled("employee",

&status);

DBiIsTableEnabled

282

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBiPrepareAttrs

Table

136.

The

extenders

that

support

DBiPrepareAttrs

Image

Audio

Video

X

Prepares

user-supplied

image

attributes.

This

API

is

used

when

an

image

object

with

user-supplied

attributes

is

stored

or

updated.

The

UDF

code

that

runs

on

the

server

always

expects

data

in

“big

endian”format,

a

format

that

is

used

by

most

UNIX

and

z/OS

platforms.

If

an

image

object

is

stored

or

updated

in

“little

endian”

format,

that

is,

from

a

non-UNIX

client,

the

DBiPrepare

API

must

be

used

before

the

store

or

update

request

is

made.

Authorization

None

Library

file

Table

137.

The

image

files

z/OS

AIX

Windows

Solaris

DMBIMAGE

libdmbimage.a

dmbimage.lib

libdmbimage.so

Include

file

dmbimage.h

Syntax

void

DBiPrepareAttrs(

MMDBImageAttrs

*imgAttr

);

Parameters

imgAttr

(in)

The

user-supplied

attributes

of

the

image.

Examples

Prepare

user-supplied

image

attributes:

#include

<dmbimage.h>

DBiPrepareAttrs(&imgattr);

DBiPrepareAttrs

Chapter

14.

Application

programming

interfaces

283

DBvAdminGetInaccessibleFiles

Table

138.

The

extenders

that

support

DBvAdminGetInaccessibleFiles

Image

Audio

Video

X

Returns

the

names

of

inaccessible

files

that

are

referred

to

in

video

columns

of

user

tables.

The

application

must

be

connected

to

a

database

server

before

calling

this

API

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

video

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

139.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvAdminGetInaccessibleFiles(

char

*qualifier,

long

*count,

FILEREF

*(*fileList)

);

Parameters

qualifier

(in)

A

valid

user

ID

or

a

null

value.

(in)

If

a

user

ID

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

If

a

null

value

is

specified,

all

tables

in

the

current

database

server

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

inaccessible

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

DBvAdminGetInaccessibleFiles

284

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NO_AUTH

User

does

not

have

access

authority

to

the

required

tables.

MMDB_RC_WARN_NO_AUTH

User

does

not

have

access

authority

to

some

of

the

required

tables.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

inaccessible

files

that

are

referred

to

in

video

columns

of

tables

that

are

owned

by

user

ID

rsmith:

#include

<dmbvideo.h>

long

idx;

rc

=

DBvAdminGetInaccessibleFiles

("rsmith",

&count,

&filelist);

DBvAdminGetInaccessibleFiles

Chapter

14.

Application

programming

interfaces

285

DBvAdminGetReferencedFiles

Table

140.

The

extenders

that

support

DBvAdminGetReferencedFiles

Image

Audio

Video

X

Returns

the

names

of

files

that

are

referred

to

in

video

columns

of

user

tables.

If

a

file

is

inaccessible

(for

example,

its

file

name

cannot

be

resolved

using

environment

variable

specifications),

the

file

name

is

preceded

with

an

asterisk.

This

API

does

not

use

the

FILENAME

field

of

the

FILEREF

data

structure,

and

therefore

sets

it

to

NULL.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

video

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

141.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvAdminGetReferencedFiles(

char

*qualifier,

long

*count,

FILEREF

*(*fileList)

);

Parameters

qualifier

(in)

A

valid

user

ID

or

a

null

value.

If

a

user

ID

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

If

a

null

value

is

specified,

all

tables

in

the

current

database

server

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

files

that

are

referred

to

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBvAdminGetReferencedFiles

286

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_NO_AUTH

User

does

not

have

access

authority

to

the

required

tables.

MMDB_RC_WARN_NO_AUTH

User

does

not

have

access

authority

to

some

of

the

required

tables.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

files

that

are

referred

to

in

video

columns

in

tables

that

are

owned

by

ajones:

#include

<dmbvideo.h>

long

idx;

rc

=

DBvAdminGetReferencedFiles

("ajones",

&count,

&filelist);

DBvAdminGetReferencedFiles

Chapter

14.

Application

programming

interfaces

287

DBvAdminIsFileReferenced

Table

142.

The

extenders

that

support

DBvAdminIsFileReferenced

Image

Audio

Video

X

Returns

a

list

of

video

column

entries

in

user

tables

that

refer

to

a

specified

file.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

that

are

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

video

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

143.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvAdminIsFileReferenced(

char

*qualifier,

char

*fileName,

long

*count,

FILEREF

*(*tableList)

);

Parameters

qualifier

(in)

A

valid

user

ID

or

a

null

value.

If

a

user

ID

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

If

a

null

value

is

specified,

all

tables

in

the

current

database

server

are

searched.

fileName

(in)

The

name

of

the

referred

to

file.

count

(out)

The

number

of

entries

in

the

output

list.

tableList

(out)

A

list

of

table

entries

that

refer

to

the

specified

file.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBvAdminIsFileReferenced

288

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_NO_AUTH

User

does

not

have

proper

authority

to

call

this

API.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

the

entries

in

video

columns

in

all

tables

in

the

current

database

that

refer

to

file

/videos/asmith.mpg:

#include

<dmbvideo.h>

long

idx;

rc

=

DBvAdminIsFileReferenced(NULL,

"/videos/asmith.mpg",

&count,

&tableList);

DBvAdminIsFileReferenced

Chapter

14.

Application

programming

interfaces

289

DBvDisableColumn

Table

144.

The

extenders

that

support

DBvDisableColumn

Image

Audio

Video

X

Disables

a

column

for

video

(DB2Video

data)

so

that

it

cannot

hold

video

data.

The

contents

of

the

column

entries

are

set

to

NULL,

and

the

metadata

associated

with

this

column

is

dropped.

All

the

triggers

defined

by

the

video

extender

for

this

column

are

also

dropped.

New

rows

can

be

inserted

into

the

table

that

contains

the

disabled

column,

and

the

new

rows

can

include

data

defined

with

type

DB2Video,

but

there

is

no

metadata

(in

the

administrative

support

tables)

associated

with

the

new

rows.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Library

file

Table

145.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvDisableColumn(

char

*tableName,

char

*colName,

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

the

video

column.

colName

(in)

The

name

of

the

video

column.

DBvDisableColumn

290

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Disable

the

tv_ads

column

in

the

employee

table

for

video

(DB2Video

data):

#include

<dmbvideo.h>

rc

=

DBvDisableColumn("employee",

"tv_ads");

DBvDisableColumn

Chapter

14.

Application

programming

interfaces

291

DBvDisableServer

Table

146.

The

extenders

that

support

DBvDisableServer

Image

Audio

Video

X

Disables

a

database

server

for

video

(DB2Video

data)

so

that

it

cannot

hold

video

data.

All

tables

in

the

database

server

defined

for

DB2Video

are

also

disabled.

The

metadata

and

UDFs

defined

by

the

Video

Extender

for

the

database

server

are

dropped.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS

Library

file

Table

147.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvDisableServer(

);

Parameters

DBvDisableServer

has

no

parameters.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Disable

the

database

server

for

video

(DB2Video

data):

#include

<dmbvideo.h>

rc

=

DBvDisableServer();

DBvDisableServer

292

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBvDisableTable

Table

148.

The

extenders

that

support

DBvDisableTable

Image

Audio

Video

X

Disables

a

table

for

video

(DB2Video

data)

so

that

it

cannot

hold

video

data.

All

columns

in

the

table

defined

for

DB2Video

are

also

disabled.

Some

of

the

metadata

defined

by

the

Video

Extender

for

the

table

is

dropped.

New

rows

can

be

inserted

into

tables

that

are

defined

with

type

DB2Video,

but

there

is

no

metadata

(in

the

administrative

support

tables)

associated

with

the

new

rows.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Library

file

Table

149.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvDisableTable(

char

*tableName

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

a

video

column.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

DBvDisableTable

Chapter

14.

Application

programming

interfaces

293

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Disable

the

employee

table

for

video

(DB2Video

data):

#include

<dmbvideo.h>

rc

=

DBvDisableTable("employee");

DBvDisableTable

294

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBvEnableColumn

Table

150.

The

extenders

that

support

DBvEnableColumn

Image

Audio

Video

X

Enables

a

column

for

video

(DB2Video

data).

The

API

defines

and

manages

relationships

between

this

column

and

the

metadata

tables.

Before

calling

this

API,

the

application

must

be

connected

to

a

database

server.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Use

privilege

is

also

required

on

table

spaces

and

buffer

pools

specified

in

the

API

parameters.

Library

file

Table

151.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvEnableColumn(

char

*tableName,

char

*colName,

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

the

video

column.

colName

(in)

The

name

of

the

video

column.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBvEnableColumn

Chapter

14.

Application

programming

interfaces

295

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_WARN_ALREADY_ENABLED

Column

is

already

enabled.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_WRONG_SIGNATURE

Data

type

for

the

specified

column

is

incorrect.

User-defined

data

type

MMDBSYS.DB2VIDEO

is

expected.

MMDB_RC_COLUMN_DOESNOT_EXIST

Column

is

not

defined

in

the

specified

table.

MMDB_RC_NOT_ENABLED

Database

server

or

table

is

not

enabled.

Examples

Enable

the

video

column

in

the

employee

table

for

video:

#include

<dmbvideo.h>

rc

=

DBvEnableColumn("employee",

"video");

DBvEnableColumn

296

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBvEnableServer

Table

152.

The

extenders

that

support

DBvEnableServer

Image

Audio

Video

X

Enables

a

database

server

for

video

(DB2Video

data).

This

API

is

called

once

per

database

server.

It

defines

a

DB2

user-defined

type,

DB2Video,

to

the

database

server.

It

also

creates

all

UDFs

that

manipulate

DB2Video

data.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS

Library

file

Table

153.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvEnableServer(

char

*tableSpace,

char

*wlmNames,

char

*externalSecurity

);

Parameters

tableSpace

(in)

The

table

space

specification

for

administrative

support

tables.

The

specification

has

two

parts

as

follows:

v

The

name

of

the

table

space

for

administrative

support

tables

that

store

attribute

data.

The

table

space

name

must

be

the

name

of

a

table

space

that

is

defined

in

the

MMDBSYS

database.

If

you

do

not

specify

a

table

space

name,

DB2

creates

a

table

space

in

the

MMDBSYS

database

for

each

global

administrative

support

table.

v

For

the

table

space,

the

using-block,

and/or

free

block,

and/or

gbpcache-block,

and/or

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

For

details

about

these

blocks

and

index

options,

see

the

description

of

the

CREATE

INDEX

command

in

the

SQL

Reference.

wlmNames

(in)

WLM

environment

names.

A

maximum

of

two

can

be

specified;

at

least

one

must

be

specified.

If

only

one

is

specified,

then

all

extender

UDFs

execute

in

that

WLM

environment.

If

two

WLM

environments

are

specified,

the

DBvEnableServer

Chapter

14.

Application

programming

interfaces

297

second

is

used

to

execute

UDFs

that

import

or

export

objects

(such

as

DB2VIDEO,

CONTENT,

and

REPLACE);

the

first

WLM

environment

is

used

for

attribute

retrieval

UDFs

(such

as

FORMAT,

and

DURATION).

externalSecurity

Indicates

how

the

UDFs

interact

with

an

external

security

product,

such

as

RACF,

to

control

access

to

files.

UDFs

that

use

files

include

import

and

export

UDFs

such

as

DB2VIDEO

and

CONTENT,

they

do

not

include

attribute

retrieval

UDFs

such

as

FORMAT.

You

can

specify

EXTERNAL

SECURITY

USER

or

EXTERNAL

SECURITY

DB2.

If

you

specify

EXTERNAL

SECURITY

USER,

each

UDF

executes

as

if

has

the

user

ID

(that

is,

the

primary

authorization

ID)

of

the

process

that

invoked

it,

and

has

permissions

as

defined

for

that

user

ID

on

the

z/OS

server.

If

you

specify

EXTERNAL

SECURITY

DB2,

UDF

access

to

files

is

performed

using

the

authorization

ID

established

for

the

WLM

environment

that

executes

file-accessing

UDFs.

All

extender

UDF

invokers

have

access

to

the

same

files.

EXTERNAL

SECURITY

DB2

is

the

default.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_WARN_ALREADY_ENABLED

The

database

server

is

already

enabled.

MMDB_RC_NOT_MMDBSYS_DBNAME

The

table

space

does

not

exist

in

database

MMDBSYS.

MMDB_RC_NO_TABLESPACE_SPECIFICATION

The

table

space

is

not

specified.

MMDB_RC_CANNOT_SET_SQLID_TO_MMDBSYS

None

of

the

authorization

IDs

of

the

application

process

has

SYSADM

authority

and

none

of

the

authorization

IDs

of

the

application

process

is

MMDBSYS.

Examples

Enable

the

database

server

for

video

(DB2Video

data)

in

the

table

space

MYTS.

Specify

WLM

environment

DMBWLM1.

Use

defaults

for

the

index

table

space

and

external

security

specifications:

#include

<dmbvideo.h>

rc

=

DBvEnableServer("myts","dmbwlm1",NULL);

DBvEnableServer

298

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBvEnableTable

Table

154.

The

extenders

that

support

DBvEnableTable

Image

Audio

Video

X

Enables

a

table

for

video

(DB2Video

data).

This

API

is

called

once

per

table.

It

creates

metadata

tables

to

store

and

manage

attributes

for

video

columns

in

a

table.

To

avoid

the

possibility

of

locking,

the

application

should

commit

transactions

before

calling

this

API.

Before

calling

this

API,

the

application

must

be

connected

to

a

database

server.

It

is

recommended

that

after

calling

this

API

you

issue

an

SQL

COMMIT

statement.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Use

privilege

is

also

required

on

table

spaces

and

buffer

pools

specified

in

the

API

parameters.

Library

file

Table

155.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvEnableTable(

char

*tableSpace,

char

*tableName

);

Parameters

tableSpace

(in)

The

table

space

specification

for

administrative

support

tables

and

LOB

data.

The

specification

has

four

parts

as

follows:

v

The

name

of

the

table

space

for

administrative

support

tables

that

store

attribute

data.

You

must

specify

this

table

space.

The

table

space

name

DBvEnableTable

Chapter

14.

Application

programming

interfaces

299

should

be

qualified

by

the

database

name;

the

table

space

should

be

in

the

same

database

as

the

user

table.

A

32

KB

page

buffer

pool

for

the

table

space

isrequired

v

For

the

table

space

for

administrative

support

tables,

the

using-block

and/or

free

block,

and/or

gbpcache-block,

and/or

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

v

The

name

of

the

table

space

for

LOB

data.

You

must

specify

this

table

space.

The

table

space

name

should

be

qualified

by

the

database

name;

the

table

space

should

be

in

the

same

database

as

the

user

table.

v

For

the

table

space

for

LOB

data,

the

using-block

and/or

free

block,

and/or

gbpcache-block,

and/or

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

For

details

about

the

blocks

and

options

for

indexes,

see

the

description

of

the

CREATE

INDEX

command

in

the

SQL

Reference.

tableName

(in)

The

name

of

the

table

that

will

contain

a

video

column.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_WARN_ALREADY_ENABLED

Table

is

already

enabled.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_TABLE_DOESNOT_EXIST

Table

does

not

exist.

Examples

Enable

the

employee

table

for

video

(DB2Video

data)

in

the

table

space

MYTS.

Specify

table

space

MYLOBTS

for

LOB

data

and

use

defaults

for

the

index

table

spaces:

#include

<dmbvideo.h>

rc

=

DBvEnableTable("myts,,mylobts",

"employee");

DBvEnableTable

300

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBvGetError

Table

156.

The

extenders

that

support

DBvGetError

Image

Audio

Video

X

Returns

a

description

of

the

last

error.

Call

this

API

after

any

other

API

returns

an

error

code.

Authorization

None.

Library

file

Table

157.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvGetError(

SQLINTEGER

*sqlcode,

char

*errorMsgText

);

Parameters

sqlcode

(out)

The

generic

SQL

error

code.

errorMsgText

(out)

The

SQL

error

message

text.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

Examples

Get

the

last

error,

storing

the

SQL

error

code

in

errCode

and

the

message

text

in

errMsg:

#include

<dmbvideo.h>

rc

=

DBvGetError(&errCode,

&errMsg);

DBvGetError

Chapter

14.

Application

programming

interfaces

301

DBvGetInaccessibleFiles

Table

158.

The

extenders

that

support

DBvGetInaccessibleFiles

Image

Audio

Video

X

Returns

the

names

of

inaccessible

files

that

are

referenced

in

video

columns

of

user

tables.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SELECT

privilege

on

enabled

video

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

159.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvGetInaccessibleFiles(

char

*tableName,

long

*count,

FILEREF

*(*fileList)

);

Parameters

tableName

(in)

A

qualified,

unqualified,

or

null

table

name.

If

a

table

name

is

specified,

that

table

is

searched

for

references

to

inaccessible

files.

If

a

null

value

is

specified,

all

tables

with

the

specified

qualifier

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

inaccessible

files

that

are

referenced

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

DBvGetInaccessibleFiles

302

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

inaccessible

files

referenced

in

video

columns

in

the

employee

table:

#include

<dmbvideo.h>

long

idx;

rc

=

DBvGetInaccessibleFiles("employee",

&count,

&filelist);

DBvGetInaccessibleFiles

Chapter

14.

Application

programming

interfaces

303

DBvGetReferencedFiles

Table

160.

The

extenders

that

support

DBvGetReferencedFiles

Image

Audio

Video

X

Returns

the

names

of

files

that

are

referenced

in

video

columns

of

user

tables.

If

a

file

is

inaccessible

(for

example,

its

file

name

cannot

be

resolved

using

environment

variable

specifications),

the

file

name

is

preceded

with

an

asterisk.

This

API

does

not

use

the

FILENAME

field

of

the

FILEREF

data

structure,

and

therefore

sets

it

to

NULL.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure.

Authorization

SELECT

privilege

on

enabled

video

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

161.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvGetReferencedFiles(

char

*tableName,

long

*count,

FILEREF

*(*fileList)

);

Parameters

tableName

(in)

A

qualified,

unqualified,

or

null

table

name.

If

a

table

name

is

specified,

that

table

is

searched

for

references

to

files.

If

a

null

value

is

specified,

all

tables

owned

by

the

current

user

ID

are

searched.

count

(out)

The

number

of

entries

in

the

output

list.

fileList

(out)

A

list

of

files

that

are

referenced

in

the

table.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBvGetReferencedFiles

304

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

all

files

that

are

referenced

in

video

columns

in

the

employee

table:

#include

<dmbvideo.h>

long

idx;

rc

=

DBvGetReferencedFiles("employee",

&count,

&filelist);

DBvGetReferencedFiles

Chapter

14.

Application

programming

interfaces

305

DBvIsColumnEnabled

Table

162.

The

extenders

that

support

DBvIsColumnEnabled

Image

Audio

Video

X

Determines

whether

a

column

has

been

enabled

for

video

(DB2Video

data).

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

Authorization

SYSADM,

DBADM,

table

owner,

or

SELECT

privilege

on

the

user

table

Library

file

Table

163.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvIsColumnEnabled(

char

*tableName,

char

*colName,

short

*status

);

Parameters

tableName

(in)

A

qualified

or

unqualified

table

name.

colName

(in)

The

name

of

a

column.

status

(out)

Indicates

whether

the

column

is

enabled.

This

parameter

returns

a

numerical

value.

The

extender

also

returns

a

constant

that

indicates

the

status.

The

values

and

constants

are:

1

MMDB_IS_ENABLED

0

MMDB_IS_NOT_ENABLED

-1

MMDB_INVALID_DATATYPE

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

DBvIsColumnEnabled

306

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Examples

Determine

if

the

video

column

in

the

employee

table

is

enabled

for

video:

#include

<dmbvideo.h>

rc

=

DBvIsColumnEnabled("employee",

"video",

&status);

DBvIsColumnEnabled

Chapter

14.

Application

programming

interfaces

307

DBvIsFileReferenced

Table

164.

The

extenders

that

support

DBvIsFileReferenced

Image

Audio

Video

X

Returns

a

list

of

table

entries

in

video

columns

that

reference

a

specified

file.

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

It

is

important

that

you

free

up

the

resources

allocated

by

this

API

after

calling

it.

Specifically,

you

must

free

up

the

filelist

data

structure

as

well

as

the

filename

field

in

each

entry

in

the

filelist.

Authorization

SELECT

privilege

on

enabled

video

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Library

file

Table

165.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvIsFileReferenced(

char

*tableName,

char

*fileName,

long

*count,

FILEREF

*(*tableList)

);

Parameters

tableName

(in)

A

qualified,

unqualified

,

or

null

table

name.

If

a

table

name

is

specified,

that

table

is

searched

for

references

to

the

specified

file.

If

a

null

value

is

specified,

all

tables

owned

by

the

current

user

ID

are

searched.

fileName

(in)

The

name

of

the

referenced

file.

count

(out)

The

number

of

entries

in

the

output

list.

tableList

(out)

A

list

of

table

entries

that

reference

the

specified

file.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

DBvIsFileReferenced

308

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

MMDB_RC_MALLOC

System

cannot

allocate

memory

to

return

the

results.

Examples

List

the

entries

in

video

columns

of

the

employee

table

that

reference

file

/videos/ajones.mpg:

#include

<dmbvideo.h>

long

idx;

rc

=

DBvIsFileReferenced(NULL,

"/videos/ajones.mpg",

&count,

&tableList);

DBvIsFileReferenced

Chapter

14.

Application

programming

interfaces

309

DBvIsServerEnabled

Table

166.

The

extenders

that

support

DBvIsServerEnabled

Image

Audio

Video

X

Determines

whether

a

database

server

has

been

enabled

for

video

(DB2Video

data).

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

Authorization

None

Library

file

Table

167.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvIsServerEnabled(

short

*status

);

Parameters

status

(out)

Indicates

whether

the

database

server

is

enabled.

This

parameter

returns

a

numerical

value.

The

extender

also

returns

a

constant

that

indicates

the

status.

The

values

and

constants

are:

1

MMDB_IS_ENABLED

0

MMDB_IS_NOT_ENABLED

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Determine

if

the

database

server

is

enabled

for

video:

#include

<dmbvideo.h>

rc

=

DBvIsServerEnabled(&status);

DBvIsServerEnabled

310

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBvIsTableEnabled

Table

168.

The

extenders

that

support

DBvIsTableEnabled

Image

Audio

Video

X

Determines

whether

a

table

has

been

enabled

for

video

(DB2Video

data).

The

application

must

be

connected

to

a

database

server

before

calling

this

API.

Authorization

None

Library

file

Table

169.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

long

DBvIsTableEnabled(

char

*tableName,

short

*status

);

Parameters

tableName

(in)

A

table

name.

status

(out)

Indicates

whether

the

table

is

enabled.

This

parameter

returns

a

numerical

value.

The

extender

also

returns

a

constant

that

indicates

the

status.

The

values

and

constants

are:

1

MMDB_IS_ENABLED

0

MMDB_IS_NOT_ENABLED

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Determine

if

the

employee

table

is

enabled

for

video:

DBvIsTableEnabled

Chapter

14.

Application

programming

interfaces

311

#include

<dmbvideo.h>

rc

=

DBvIsTableEnabled("employee",

&status);

DBvIsTableEnabled

312

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBvPlay

Table

170.

The

extenders

that

support

DBvPlay

Image

Audio

Video

X

Opens

the

video

player

on

the

client

and

plays

a

video.

The

video

can

be

stored

in

a

video

column

or

an

external

file:

v

If

the

video

is

stored

in

an

external

file,

you

can

pass

either

the

name

of

the

file

or

the

video

handle

to

this

API.

The

API

uses

the

client

environment

variable

DB2VIDEOPATH

to

resolve

the

file

location.

The

file

must

be

accessible

from

the

client

workstation.

v

If

the

video

is

stored

in

a

column,

you

must

pass

the

video

handle

to

the

API.

The

application

must

be

connected

to

the

database

server

and

have

SELECT

privilege

on

the

administrative

support

tables

for

the

user

table

in

which

the

video

is

stored.

If

the

video

is

stored

in

a

column,

the

extender

creates

a

temporary

file

and

copies

the

content

of

the

object

from

the

column

to

the

file.

The

extender

might

also

create

a

temporary

file

if

the

video

is

stored

in

an

external

file

and

its

relative

filename

cannot

be

resolved

using

the

values

in

environment

variables,

or

if

the

file

is

not

accessible

on

the

client

machine.

The

temporary

file

is

created

in

the

directory

specified

in

the

DB2VIDEOTEMP

environment

variable.

The

extender

then

plays

the

video

from

the

temporary

file.

Authorization

Select

authority

on

the

user

table,

if

playing

a

video

from

a

column.

Library

file

Table

171.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

Play

a

video

stored

in

a

column

long

DBvPlay(

char

*playerName,

MMDB_PLAY_HANDLE,

DB2Video

*videoHandle,

waitFlag

);

Syntax

Play

a

video

stored

as

a

file

DBvPlay

Chapter

14.

Application

programming

interfaces

313

long

DBvPlay(

char

*playerName,

MMDB_PLAY_FILE,

char

*fileName,

waitFlag

);

Parameters

playerName

(in)

The

name

of

the

video

player.

If

set

to

NULL,

the

default

video

player

specified

by

the

DB2VIDEOPLAYER

environment

variable

is

used.

MMDB_PLAY_HANDLE

(in)

A

constant

that

indicates

the

video

is

stored

in

a

column.

MMDB_PLAY_FILE

(in)

A

constant

that

indicates

the

video

is

stored

as

a

file

that

is

accessible

from

the

client.

videoHandle

(in)

The

handle

of

the

video.

This

parameter

must

be

passed

when

you

play

a

video

in

a

column.

If

the

video

handle

represents

an

external

file,

the

client

environment

variable

DB2VIDEOPATH

is

used

to

resolve

the

file

location.

fileName

(in)

The

name

of

the

file

that

contains

the

video.

The

API

uses

the

client

environment

variable

DB2VIDEOPATH

to

resolve

the

file

location.

The

file

must

be

accessible

from

the

client

workstation.

waitFlag

(in)

A

constant

that

indicates

whether

your

program

waits

for

the

user

to

close

the

player

before

continuing.

MMDB_PLAY_WAIT

runs

the

player

in

the

same

thread

as

your

application.

MMDB_PLAY_NO_WAIT

runs

the

player

in

a

separate

thread.

Error

codes

MMDB_SUCCESS

API

call

processed

successfully.

MMDB_RC_NO_AUTH

Caller

does

not

have

the

proper

access

authority.

MMDB_RC_NOT_CONNECTED

Application

does

not

have

valid

connection

to

a

database

server.

Examples

Play

the

video

identified

by

the

videoHandle.

Run

the

default

player

in

the

same

thread

as

the

application:

#include

<dmbvideo.h>

rc

=

DBvPlay(NULL,

MMDB_PLAY_HANDLE,

videoHandle,

MMDB_PLAY_WAIT);

DBvPlay

314

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DBvPrepareAttrs

Table

172.

The

extenders

that

support

DBvPrepareAttrs

Image

Audio

Video

X

Prepares

user-supplied

video

attributes.

This

API

is

used

when

a

video

object

with

user-supplied

attributes

is

stored

or

updated.

The

UDF

code

that

runs

on

the

server

always

expects

data

in

“big

endian”format,

a

format

used

by

most

UNIX

and

z/OS

platforms.

If

a

video

object

is

stored

or

updated

in

“little

endian”

format,

that

is,

from

a

non-UNIX

client,

the

DBvPrepare

API

must

be

used

before

the

store

or

update

request

is

made.

Authorization

None

Library

file

Table

173.

The

video

files

z/OS

AIX

Windows

Solaris

DMBVIDEO

libdmbvideo.a

dmbvideo.lib

libdmbvideo.so

Include

file

dmbvideo.h

Syntax

void

DBvPrepareAttrs(

MMDBVideoAttrs

*vidAttr

);

Parameters

vidAttr

(in)

The

user-supplied

attributes

of

the

video.

Examples

Prepare

user-supplied

video

attributes:

#include

<dmbvideo.h>

DBvPrepareAttrs(&vidattr);

DBvPrepareAttrs

Chapter

14.

Application

programming

interfaces

315

QbAddFeature

Table

174.

The

extenders

that

support

QbAddFeature

Image

Audio

Video

X

Adds

a

feature

to

the

currently

opened

catalog.

QbAddFeature

creates

the

feature

table

for

the

specified

feature

in

the

database

server.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

After

adding

images

to

the

image

column

in

your

user

table,

use

the

QbReCatalogColumn

API,

which

adds

an

entry

for

each

image

to

the

feature

table

and

analyzes

the

images.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER

and

SELECT

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Use

privilege

is

also

required

on

table

spaces

and

buffer

pools

specified

when

the

catalog

is

created.

Library

file

Table

175.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbAddFeature(

QbCatalogHandle

cHdl,

char

*featureName

);

Parameters

cHdl

(in)

A

pointer

to

the

handle

of

the

catalog.

featureName

(in)

The

name

of

the

feature.

The

following

features

are

supplied

with

the

Image

extender:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

QbAddFeature

316

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

v

QbTextureFeatureClass

Error

codes

qbicECIvalidHandle

The

catalog

handle

is

not

valid.

qbicECCatalogReadOnly

The

catalog

is

open

for

read

only.

qbicECDupFeature

The

feature

is

already

in

the

catalog.

qbiECinvalidFeatureClass

The

feature

you

specified

is

not

a

valid

name

format.

Examples

Add

the

QbColorFeatureClass

feature

to

the

catalog

identified

by

the

handle

CatHdl:

#include

<dmbqbapi.h>

rc

=

QbAddFeature(CatHdl,

QbColorFeatureClass);

QbAddFeature

Chapter

14.

Application

programming

interfaces

317

QbCatalogColumn

Table

176.

The

extenders

that

support

QbCatalogColumn

Image

Audio

Video

X

Catalogs

the

images

in

the

image

column

of

your

user

table

that

have

not

been

cataloged.

The

API

adds

an

entry

for

each

image

to

the

feature

table,

and

then

analyzes

the

images.

When

the

API

analyzes

the

image,

it

creates

image

data

and

stores

it

in

the

image’s

entry

in

the

feature

table.

The

default

parameters

for

the

features

are

used.

The

catalog

must

be

open.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

on

the

database

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

SELECT

privilege

on

the

user

table

v

Table

owner

v

Select

privilege

on

the

user

table

and

SELECT,

INSERT,

UPDATE,

and

DELETE

privileges

on

the

administrative

support

tables

for

the

enabled

table

and

the

QBIC

catalog

Library

file

Table

177.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbCatalogColumn(

QbCatalogHandle

cHdl

);

Parameters

cHdl

(in)

A

pointer

to

the

handle

of

the

catalog.

Error

codes

qbicECIvalidHandle

The

catalog

handle

is

not

valid.

qbicECInvalidCatalog

The

specified

handle

or

table

column

is

not

valid

for

the

catalog.

QbCatalogColumn

318

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

qbicECCatalog

Errors

Errors

occurred

while

cataloging

individual

images,

these

error

were

logged.

Rollback

not

incurred.

qbicECImageNotFound

The

image

cannot

be

found

or

accessed.

qbicECCatalogRO

The

catalog

is

read-only.

qbicECSQLError

An

SQL

error

occurred.

Examples

#include

<dmbqbapi.h>

rc

=

QbCatalogColumn(CatHdl);

QbCatalogColumn

Chapter

14.

Application

programming

interfaces

319

QbCloseCatalog

Table

178.

The

extenders

that

support

QbCloseCatalog

Image

Audio

Video

X

Closes

the

catalog.

The

API

frees

the

opened

catalog

handle

and

the

allocated

resources.

Authorization

None

Library

file

Table

179.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbCloseCatalog(

QbCatalogHandle

cHdl

);

Parameters

cHdl

(in)

A

pointer

to

the

handle

of

the

catalog.

Error

codes

qbicECIvalidHandle

The

catalog

handle

is

not

valid.

Examples

Close

the

catalog

identified

by

the

handle

CatHdl:

#include

<dmbqbapi.h>

rc

=

QbCloseCatalog(CatHdl);

QbCloseCatalog

320

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbCreateCatalog

Table

180.

The

extenders

that

support

QbCreateCatalog

Image

Audio

Video

X

Creates

a

catalog

in

the

currently

connected

database

server

for

the

specified

image

column.

The

column

must

be

enabled

for

image

data.

The

API

creates

a

name

for

the

catalog,

which

is

used

as

the

qualifier.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER

and

SELECT

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Use

privilege

is

also

required

on

table

spaces

and

buffer

pools

specified

in

the

API’s

parameters.

Library

file

Table

181.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbCreateCatalog(

char

*tableName,

char

*columnName,

SQLINTEGER

autoCatalog,

char

*tableSpace

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

an

image

column.

columnName

(in)

The

name

of

the

image

column

for

which

you

are

creating

a

catalog.

autoCatalog

(in)

This

value

must

be

set

to

0

to

indicate

manual

cataloging.

Manual

cataloging

means

that

the

user

will

explicitly

request

the

Image

Extender

to

QbCreateCatalog

Chapter

14.

Application

programming

interfaces

321

catalog

images.

You

can

use

the

QbCatalogColumn

API

to

catalog

images

that

you

add

to

the

image

column.

(By

comparison,

the

Image

Extender

for

UDB

Version

5.2,

that

is,

the

workstation

version

of

the

Image

Extender,

supports

automatic

cataloging.

Automatic

cataloging

means

that

the

Image

Extender

automatically

catalogs

an

image

after

the

image

is

stored

in

a

user

table.

tableSpace

(in)

The

table

space

and

index

options

for

the

QBIC

catalog.

The

specification

has

four

parts:

v

The

name

of

the

table

space

for

the

catalog

tables

that

contain

feature

data.

The

table

space

must

be

specified.

The

table

space

should

be

a

segmented

table

space.

v

For

the

index

created

on

the

catalog

tables,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

This

specification

is

optional.

You

get

defaults

if

you

do

not

specify

this

part.

v

The

name

of

the

table

space

for

the

catalog

log

table.

The

table

space

can

be

a

simple

table

space

or

a

segmented

table

space.

This

specification

is

optional.

If

you

do

not

specify

a

table

space

for

the

log

table,

the

table

space

specified

for

the

feature

data

tables

is

used.

v

For

the

index

created

on

the

log

data

table,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

This

specification

is

optional.

You

get

defaults

if

you

do

not

specify

this

part.

Error

codes

qbicECSqlError

An

SQL

error

occurred.

qbicECNotEnabled

The

database

server,

table,

or

column

is

not

enabled

for

the

DB2Image

data

type.

qbicECDupCatalog

The

catalog

already

exists.

qbicECunsupportedOption

An

unsupported

option

was

specified.

qbicECerrorParameterTooLong

A

parameter

was

too

long

for

processing.

qbicECqerr

A

QBIC

error

occurred,

a

message

was

produced.

qbicECqerrUnknown

An

internal

QBIC

error

occurred,

a

generic

error

message

was

produced.

Examples

Create

a

catalog

for

the

images

in

the

picture

column

of

the

employee

table.

Set

auto-cataloging

on:

#include

<dmbqbapi.h>

rc

=

QbCreateCatalog("employee",

"picture",

1);

QbCreateCatalog

322

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbDeleteCatalog

Table

182.

The

extenders

that

support

QbDeleteCatalog

Image

Audio

Video

X

Deletes

the

specified

catalog

from

the

current

database

server.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER

and

SELECT

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Library

file

Table

183.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbDeleteCatalog(

char

*tableName,

char

*columnName

);

Parameters

tableName

(in)

The

name

of

the

table

that

contains

the

image

column.

columnName

(in)

The

name

of

the

image

column

associated

with

the

catalog.

Error

codes

qbicECIvalidHandle

The

catalog

handle

is

not

valid.

qbicECCatalogInUse

The

catalog

was

being

used

by

someone

else.

qbicECCatalogRO

The

catalog

is

read-only.

QbDeleteCatalog

Chapter

14.

Application

programming

interfaces

323

qbicECSystem

A

system

error

occurred.

qbicECSqlError

An

SQL

error

occurred.

Examples

Delete

the

QBIC

catalog

associated

with

the

picture

column

in

the

employee

table:

#include

<dmbqbapi.h>

rc=QbDeleteCatalog("employee",

"picture");

QbDeleteCatalog

324

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbGetCatalogInfo

Table

184.

The

extenders

that

support

QbGetCatalogInfo

Image

Audio

Video

X

Returns

a

QbCatalogInfo

structure

that

contains

the

following

information:

v

The

name

of

the

user

table

and

the

image

column

the

catalog

belongs

to.

v

The

number

of

features

included

in

the

catalog.

v

The

manual

cataloging

indicator.

v

The

table

specifications

for

the

catalog.

Authorization

v

SYSADM

v

DBADM

on

the

database

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

SELECT

privilege

on

the

user

table

v

SELECT

privilege

on

the

user

table

and

SELECT

privilege

on

the

QBIC

catalog

tables

Library

file

Table

185.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbGetCatalogInfo(

QbCatalogHandle

cHdl,

QbCatalogInfo

*catInfo

);

Parameters

cHdl

(in)

A

pointer

to

the

handle

of

the

catalog.

catInfo

(out)

The

catalog

information

structure.

Error

codes

qbicECIvalidHandle

The

catalog

handle

is

not

valid.

Examples

Get

information

about

the

catalog

identified

by

the

handle

CatHdl

and

return

it

in

a

structure

called

catInfo:

QbGetCatalogInfo

Chapter

14.

Application

programming

interfaces

325

#include

<dmbqbapi.h>

rc

=

QbGetCatalogInfo(CatHdl,

&catInfo);

QbGetCatalogInfo

326

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbListFeatures

Table

186.

The

extenders

that

support

QbListFeatures

Image

Audio

Video

X

Returns

a

list

of

the

active

features

currently

included

in

a

catalog.

The

list

is

returned

to

a

buffer

you

allocate.

Authorization

v

SYSADM

v

DBADM

on

the

database

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS

v

SELECT

privilege

on

the

QBIC

Catalog

tables

Library

file

Table

187.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbListFeatures(

QbCatalogHandle

cHdl,

SQLINTEGER

bufSize,

SQLINTEGER

*count,

char

*featureNames

);

Parameters

cHdl

(in)

A

pointer

to

the

handle

of

the

catalog.

bufSize

(in)

The

size

of

your

buffer.

To

estimate

the

needed

buffer

size,

you

can

use

the

feature

count

returned

by

the

QbGetCatalogInfo

API,

and

multiply

the

count

by

the

length

of

the

longest

feature

name.

Feature

names

stored

in

the

buffer

are

separated

by

a

blank

character.

count

(out)

The

number

of

returned

feature

names.

featureNames

(out)

An

array

of

feature

names

in

your

buffer.

Error

codes

qbicECIvalidHandle

The

catalog

handle

is

not

valid.

QbListFeatures

Chapter

14.

Application

programming

interfaces

327

qbicECTruncateData

The

returned

data

was

truncated

because

the

return

buffer

was

too

small.

Examples

Get

a

list

of

the

active

features

in

the

catalog

identified

by

the

handle

CatHdl.

Store

the

information

in

the

featureNames

array.

First,

calculate

bufSize,

which

is

the

buffer

size

you

need

for

the

list.

Use

the

QbGetCatalogInfo

API

to

return

the

number

of

features

in

the

catInfo

structure.

Then

multiply

that

number

by

the

constant

qbiMaxFeatureName,

which

is

the

size

of

the

longest

feature

name:

#include

<dmbqbapi.h>

rc

=

QbGetCatalogInfo(CatHdl,

&catInfo);

bufSize

=

catInfo.featureCount*qbiMaxFeatureName;

rc

=

QbListFeatures(CatHdl,

bufSize,

count,

featureNames);

QbListFeatures

328

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbOpenCatalog

Table

188.

The

extenders

that

support

QbOpenCatalog

Image

Audio

Video

X

Opens

the

QBIC

catalog

for

a

specific

image

column.

You

can

open

the

catalog

in

read

mode

or

update

mode.

The

API

returns

a

handle

for

the

opened

catalog.

You

then

use

the

handle

in

other

APIs

to

manage

and

populate

the

catalog.

Make

sure

you

close

the

catalog

after

you

are

finished

with

it.

Authorization

None

Library

file

Table

189.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbOpenCatalog(

char

*tableName,

char

*columnName,

SQLINTEGER

mode,

QbCatalogHandle

*cHdl

);

Parameters

tableName

(in)

The

table

name

containing

the

image

column.

columnName

(in)

The

name

of

the

image

column.

mode

(in)

The

mode

in

which

you

are

opening

the

catalog.

Valid

values

are

qbiRead

and

qbiUpdate.

cHdl

(out)

A

pointer

to

the

handle

of

the

catalog.

Error

codes

qbicECCatalogNotFound

The

catalog

was

not

found.

qbicECCatalogInUse

The

catalog

was

being

used

by

someone

else.

QbOpenCatalog

Chapter

14.

Application

programming

interfaces

329

qbicECOpenFailed

The

catalog

could

not

be

opened.

qbicECNotEnabled

The

catalog

is

not

enabled.

qbicECNoCatalogFound

No

catalog

was

found.

qbicECSqlError

An

SQL

error

occurred.

qbicECSystem

A

system

error

occurred.

Examples

Open

the

catalog

for

the

picture

column

in

the

employee

table

in

read

mode:

#include

<dmbqbapi.h>

rc=QbOpenCatalog("employee",

"picture",

qbiread,

&CatHdl);

QbOpenCatalog

330

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbQueryAddFeature

Table

190.

The

extenders

that

support

QbQueryAddFeature

Image

Audio

Video

X

Adds

the

specified

feature

to

a

QBIC

Catalog.

Authorization

None.

Library

file

Table

191.

The

image

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryAddFeature(

QbQueryHandle

qObj,

char

*featureName

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

featureName

(in)

The

name

of

the

query

feature

to

be

added.

The

following

features

are

supplied

with

the

image

extender:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Error

codes

qbiECinvalidQueryHandle

The

query

object

handle

you

specified

does

not

reference

a

valid

query

object.

qbiECunknownFeatureClass

The

feature

you

specified

is

not

a

recognized

feature

class

name.

qbiECinvalidFeatureClass

The

feature

you

specified

is

not

a

valid

name

format.

qbiECfeaturePresent

The

feature

you

specified

is

already

a

member

of

the

query

object.

QbQueryAddFeature

Chapter

14.

Application

programming

interfaces

331

qbiECallocation

The

system

cannot

allocate

enough

memory.

Examples

Add

the

QbColorFeatureClass

feature

to

the

query

object

identified

by

the

qoHandle

handle:

#include

<dmbqbapi.h>

rc

=

QbQueryAddFeature(qoHandle,

"QbColorFeatureClass");

QbQueryAddFeature

332

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbQueryCreate

Table

192.

The

extenders

that

support

QbQueryCreate

Image

Audio

Video

X

Creates

a

query

object

and

returns

a

handle.

You

can

use

the

handle

with

other

APIs

to

manipulate

the

query

object.

Authorization

None.

Library

file

Table

193.

The

image

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryCreate(

QbQueryHandle

*qObj

);

Parameters

qObj

(out)

A

pointer

to

the

query

handle.

If

unsuccessful,

this

handle

is

set

to

0.

Error

codes

qbiECallocation

The

system

cannot

allocate

enough

memory.

Examples

Create

a

query

object

and

return

the

handle

in

qoHandle:

#include

<dmbqbapi.h>

rc

=

QbQueryCreate(&qoHandle);

QbQueryCreate

Chapter

14.

Application

programming

interfaces

333

QbQueryDelete

Table

194.

The

extenders

that

support

QbQueryDelete

Image

Audio

Video

X

Deletes

an

unnamed

query

object.

The

API

releases

all

the

memory

used

by

the

query

object

and

any

added

features.

Authorization

None.

Library

file

Table

195.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryDelete(

QbQueryHandle

qObj

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

Error

codes

qbiECinvalidQueryHandle

The

queryobject

handle

you

specified

does

not

reference

a

valid

query.

Examples

Delete

the

query

object

identified

by

the

handle

qoHandle:

#include

<dmbqbapi.h>

rc

=

QbQueryDelete(qoHandle);

QbQueryDelete

334

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbQueryGetFeatureCount

Table

196.

The

extenders

that

support

QbQueryGetFeatureCount

Image

Audio

Video

X

Returns

the

number

of

features

added

to

the

query

object.

The

following

features

are

supplied

with

the

Image

Extender:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Authorization

None.

Library

file

Table

197.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryGetFeatureCount(

QbQueryHandle

qObj,

SQLINTEGER*

count

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

count

(out)

The

pointer

to

the

variable

to

set

to

the

number

of

features

present.

Error

codes

qbiECinvalidQueryHandle

The

query

object

handle

you

specified

does

not

reference

a

valid

query

object.

Examples

Return

the

number

of

features

for

the

query

objectidentified

by

the

handle

qoHandle:

#include

<dmbqbapi.h>

rc

=

QbQueryGetFeatureCount(qoHandle,

&count);

QbQueryGetFeatureCount

Chapter

14.

Application

programming

interfaces

335

QbQueryGetString

Table

198.

The

extenders

that

support

QbQueryGetString

Image

Audio

Video

X

Returns

the

query

string

from

a

query.

You

can

use

the

query

string

for

input

to

UDFs

in

your

application,

for

example

in

the

UDF

QbScoreFromStr

or

the

API

QbQueryStringSearch.

Authorization

None.

Library

file

Table

199.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryGetString(

QbQueryHandle

qObj,

(char*)*

queryString

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

queryString

(out)

The

pointer

to

the

query

string

for

the

query

object.

Error

codes

qbiECinvalidQueryHandle

The

query

handle

that

you

specified

does

not

reference

a

valid

query.

Examples

Return

the

query

string

for

the

query

object

identified

by

the

handle

qrHandle.

#include

<dmbqbapi.h>

SQLRETURN

rc;

char

*queryString;

QbQueryHandle

qrHandle

rc

=

QbQueryGetString(qrHandle,

&queryString);

if

(rc

==

0)

{

...

/*

use

the

returned

queryString

for

input

to

UDFs

*/

free((void*)queryString);

/*

you

must

free

queryString

*/

queryString=(char*)0;

}

QbQueryGetString

336

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbQueryListFeatures

Table

200.

The

extenders

that

support

QbQueryListFeatures

Image

Audio

Video

X

Returns

a

current

list

of

features

in

the

query

object.

The

API

returns

the

list

to

a

buffer

that

you

allocate.

The

following

features

are

supplied

with

the

Image

Extender:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Authorization

None.

Library

file

Table

201.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryListFeatures(

QbQueryHandle

qObj,

SQLINTEGER

bufSize,

SQLINTEGER*

count,

char

*featureNames

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

bufSize

(in)

The

size

of

the

featureNames

buffer.

Use

the

qbiMaxFeatureName

constant

as

the

buffer

size.

Query

object

features

are

identified

by

a

character

string

name.

count

(out)

The

number

of

the

returned

feature

names.

featureNames

(out)

The

pointer

to

the

array

of

feature

names

for

the

query

object.

The

array

is

stored

in

the

buffer

that

you

allocate.

QbQueryListFeatures

Chapter

14.

Application

programming

interfaces

337

Error

codes

qbiECinvalidQueryHandle

The

query

handle

that

you

specified

does

not

reference

a

valid

query.

Examples

Return

the

number

of

features

in

the

query

object

identified

by

the

handle

qoHandle.

Use

the

qbiMaxFeatureName

constant

to

determine

the

size

of

the

buffer

you

need.

Return

the

feature

name

to

the

feats

buffer

and

the

number

of

features

to

the

retCount

variable:

#include

<dmbqbapi.h>

bufSize

=

qbiMaxFeatureName;

rc

=

QbQueryListFeatures(qoHandle,

bufSize,

&retCount,

feats);

QbQueryListFeatures

338

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbQueryNameCreate

Table

202.

The

extenders

that

support

QbQueryNameCreate

Image

Audio

Video

X

Stores

and

names

a

query

object

so

that

you

can

use

it

in

a

UDF.

You

provide

the

name

and

can

provide

the

description

of

the

query

object.

Notes:

1.

EEE

Only:

QbQueryNameCreate

is

not

supported

in

a

partitioned

database

environment.

2.

QbQueryNameCreate

will

be

deprecated

in

future

releases

for

non-partitioned

database

environments.

To

save

a

query,

you

should

use

QbQueryGetString

to

get

the

query

string

and

save

that

string

for

later

use

in

your

application.

Authorization

Insert

authority

on

the

MMDBSYS.QBICQUERIES

table.

Library

file

Table

203.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryNameCreate(

QbQueryHandle

qObj,

char

*name,

char

*description

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

name

(in)

The

name

of

the

query

object.

The

name

can

be

up

to

18

characters.

description

(in)

A

brief

description

of

the

query

object,

up

to

250

characters.

Error

codes

qbiECinvalidQueryHandle

The

query

object

handle

that

you

specified

does

not

reference

a

valid

query

.

QbQueryNameCreate

Chapter

14.

Application

programming

interfaces

339

Examples

Give

a

name

and

description

to

the

query

object

created

with

the

QbQueryCreate

API:

#include

<dmbqbapi.h>

rc

=

QbQueryNameCreate(qHandle,

"fshavgcol",

"average

color

query,

10/15/96");

QbQueryNameCreate

340

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbQueryNameDelete

Table

204.

The

extenders

that

support

QbQueryNameDelete

Image

Audio

Video

X

Deletes

a

query

object.

The

query

object

must

have

been

named

and

stored

using

the

QbQueryNameCreate

API.

Notes:

1.

EEE

Only:

QbQueryNameDelete

is

not

supported

in

a

partitioned

database

environment.

2.

QbQueryNameDelete

will

be

deprecated

in

future

releases

for

non-partitioned

database

environments.

Authorization

Delete

authority

on

the

MMDBSYS.QBICQUERIES

table.

Library

file

Table

205.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryNameDelete(

char

*name

);

Parameters

name

(in)

The

name

of

the

query

object

you

are

deleting.

Error

codes

qbiECinvalidQueryHandle

The

queryobject

handle

that

you

specified

does

not

reference

a

valid

query

object.

Examples

Delete

the

query

object

named

fshavgcol:

#include

<dmbqbapi.h>

rc

=

QbQueryNameDelete("fshavgcol",);

QbQueryNameDelete

Chapter

14.

Application

programming

interfaces

341

QbQueryNameSearch

Table

206.

The

extenders

that

support

QbQueryNameSearch

Image

Audio

Video

X

Searches

the

QBIC

catalog

for

images

that

match

the

search

criteria

contained

in

a

query

object.

The

query

object

is

identified

by

its

name.

The

results,

which

include

the

image

handles

and

QBIC

search

scores,

are

stored

in

a

result

array

in

the

client

memory.

The

results

are

sorted

according

to

their

scores.

Notes:

1.

EEE

Only:

QbQueryNameSearch

is

not

supported

in

a

partitioned

database

environment.

2.

QbQueryNameSearch

will

be

deprecated

in

future

releases

for

non-partitioned

database

environments.

To

save

a

query,

you

should

use

QbQueryGetString

to

get

the

query

string

and

save

that

string

for

later

use

in

your

application.

Authorization

v

SELECT

privilege

on

MMDBSYS.QBICQUERIES

v

SELECT

privilege

on

the

QBIC

catalog

tables

v

SELECT

privilege

on

administrative

support

tables

for

any

handles

specified

in

the

query

v

Authority

to

reference

files

specified

in

the

query

Library

file

Table

207.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryNameSearch(

char

*qName,

char

*tableName,

char

*columnName,

SQLINTEGER

maxReturns,

QbQueryScope*

scope,

SQLINTEGER

resultType,

SQLINTEGER*

count,

QbResult*

returns

);

Parameters

qName

(in)

The

name

of

the

query

object.

tableName

(in)

The

name

of

the

table

containing

the

column

of

images

you

want

to

search.

QbQueryNameSearch

342

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

columnName

(in)

The

name

of

the

image

column.

The

column

must

be

enabled

for

image

data.

maxReturns

(in)

The

maximum

number

of

images

you

want

returned.

scope

(in)

(Reserved)

Must

be

set

to

0

(NULL)

resultType

(in)

(Reserved)

Must

be

set

to

qbiArray.

count

(out)

The

pointer

to

the

number

of

images

returned.

If

zero

is

returned,

make

sure

the

image

column

is

cataloged

for

all

the

features

in

the

query

object.

returns

(out)

The

pointer

to

the

array

of

QbResult

structures

that

hold

the

returned

results.

Make

sure

you

allocate

the

buffer

large

enough

to

hold

all

the

results

you

expect.

Error

codes

qbiECinvalidQueryHandle

The

query

objecthandle

you

specified

does

not

reference

a

valid

query

obje.

Examples

Run

the

query

FSHAVGCOL

against

the

cataloged

images

in

the

picture

column

of

the

employee

table.

Make

sure

that

no

more

than

six

images

are

returned:

#include

<dmbqbapi.h>

rc

=

QbQueryNameSearch("fshavgcol",

"employee",

"picture",

6,

0,

qbiArray,

&count,

&returns);

QbQueryNameSearch

Chapter

14.

Application

programming

interfaces

343

QbQueryRemoveFeature

Table

208.

The

extenders

that

support

QbQueryRemoveFeature

Image

Audio

Video

X

Removes

a

query

feature

from

the

query

object

and

deallocates

any

associated

memory.

The

following

features

are

supplied

with

the

Image

Extender:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Authorization

None.

Library

file

Table

209.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryRemoveFeature(

QbQueryHandle

qObj,

char

*featureName

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

featureName

(in)

The

name

of

the

feature

to

be

removed.

Error

codes

qbiECinvalidQueryHandle

The

query

object

handle

you

specified

does

not

reference

a

valid

query

object.

qbiECinvalidFeatureClass

The

feature

you

specified

is

not

a

valid

name

format.

qbiECfeatureNotPresent

The

feature

you

specified

is

not

a

member

of

the

query

object.

QbQueryRemoveFeature

344

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Examples

Remove

the

QbColorFeatureClass

feature

from

the

query

object

identified

by

the

handle

qoHandle:

#include

<dmbqbapi.h>

rc

=

QbQueryRemoveFeature(qoHandle,

"QbColorFeatureClass");

QbQueryRemoveFeature

Chapter

14.

Application

programming

interfaces

345

QbQuerySearch

Table

210.

The

extenders

that

support

QbQuerySearch

Image

Audio

Video

X

Searches

the

QBIC

catalog

for

images

that

match

the

search

criteria

contained

in

a

query

object.

The

query

object

is

identified

by

a

query

object

handle.

The

results,

which

include

the

image

handles

and

their

QBIC

search

scores,

are

stored

in

a

result

array

in

the

client

memory.

They

are

sorted

according

to

their

scores.

Authorization

v

SELECT

privilege

on

the

QBIC

catalog

tables

v

SELECT

privilege

on

administrative

support

tables

for

any

handles

specified

in

the

query

v

Authority

to

reference

files

specified

in

the

query

Library

file

Table

211.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQuerySearch(

QbQueryHandle

qObj,

char

*tableName,

char

*columnName,

SQLINTEGER

maxReturns,

QbQueryScope*

scope,

SQLINTEGER

resultType,

SQLINTEGER*

count,

QbResult*

returns

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

tableName

(in)

The

name

of

the

table

containing

the

column

of

images

you

want

to

search.

columnName

(in)

The

name

of

the

image

column.

The

column

must

be

enabled

for

image

data.

maxReturns

(in)

The

maximum

number

of

images

you

want

returned.

scope

(in)

(Reserved)

Must

be

set

to

0

(NULL).

QbQuerySearch

346

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

resultType

(in)

(Reserved)

Must

be

set

to

qbiArray.

count

(out)

The

pointer

to

the

number

of

images

returned.

If

zero

is

returned,

make

sure

the

image

column

is

cataloged

for

all

the

features

in

the

query

object.

returns

(out)

The

pointer

to

the

array

of

QbResult

structures

that

hold

the

returned

results.

Make

sure

that

you

allocate

the

buffer

large

enough

to

hold

all

the

results

that

you

expect.

Error

codes

qbiECinvalidQueryHandle

The

query

object

handle

you

specified

does

not

reference

a

valid

query

object.

Examples

Query

the

cataloged

images

in

the

picture

column

of

the

employee

table.

Make

sure

that

no

more

than

six

images

are

returned:

#include

<dmbqbapi.h>

rc

=

QbQuerySearch(qHandle,

"employee",

"picture",

6,

0,

qbiArray,

&count,

&returns);

QbQuerySearch

Chapter

14.

Application

programming

interfaces

347

QbQuerySetFeatureData

Table

212.

The

extenders

that

support

QbQuerySetFeatureData

Image

Audio

Video

X

Sets

the

source

of

the

image

data

for

a

feature

in

a

query

object.

You

can

set

the

data

source

only

after

adding

a

feature

to

a

query

object.

The

data

source

can

be

an

image

in

a

user

table,

.

In

addition,

you

can

explicitly

specify

data

for

the

average

color

or

histogram

color

feature.

Use

the

QbQueryStringSearch

following

setting

the

source

for

image

data

in

a

server

file

using

QbQuerySetFeatureData.

QbQuerySearch

does

not

use

the

source

for

image

data

from

a

server

file

set

with

QbQuerySetFeatureData.

The

following

features

are

supplied

with

the

Image

extender:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Authorization

None.

Library

file

Table

213.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQuerySetFeatureData(

QbQueryHandle

qObj,

char

*featureName,

QbImageSource*

imgSource

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

featureName

(in)

The

name

of

the

feature

to

be

set.

imgSource

(in)

The

pointer

to

the

image

source

structure.

If

you

specify

0

(NULL)

for

imgSource,

it

means

that

the

information

should

not

be

changed

in

the

feature.

See

“Using

data

source

structures”

on

page

126

for

more

information.

QbQuerySetFeatureData

348

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Error

codes

qbiECinvalidQueryHandle

The

query

object

handle

you

specified

does

not

reference

a

valid

query

object.

qbiECunknownFeatureClass

The

feature

you

specified

is

not

a

recognized

feature

class

name.

qbiECinvalidFeatureClass

The

feature

you

specified

is

not

a

valid

name

format.

qbiECfeatureNotPresent

The

feature

you

specified

is

not

a

member

of

the

query

object.

qbiECfileUnreadable

The

image

source

file

cannot

be

found

or

read.

Examples

Set

the

data

source

for

the

histogram

color

feature

in

a

query

object.

The

data

source

for

the

feature

is

an

image

in

a

users

table:

#include

<dmbqbapi.h>

QbQueryHandle

qoHandle;

QbImageSource

imgSource;

imgSource.sourceType

=

qbiSource_ImageHandle;

strcpy(imgSource.imageHandle,handleFile);

rc

=

QbQuerySetFeatureData(qoHandle,

"QbColorHistogramFeatureClass",

&imgSource);

QbQuerySetFeatureData

Chapter

14.

Application

programming

interfaces

349

QbQuerySetFeatureWeight

Table

214.

The

extenders

that

support

QbQuerySetFeatureWeight

Image

Audio

Video

X

Sets

the

weight

of

the

specified

feature

in

a

query

object.

Authorization

None.

Library

file

Table

215.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQuerySetFeatureWeight(

QbQueryHandle

qObj,

sqldouble*

weight

);

Parameters

qObj

(in)

The

handle

of

the

query

object.

weight

(out)

The

pointer

to

the

variable

to

set

to

the

feature

weight.

Error

codes

qbiECinvalidQueryHandle

The

query

object

handle

that

you

specified

does

not

reference

a

valid

query

object.

Examples

Set

the

weight

for

the

average

color

feature

in

a

query

object

identified

by

the

handle

qoHandle:

#include

<dmbqbapi.h>

weight=2.0

rc

=

QbQuerySetFeatureWeight(qoHandle,

"QbColorFeatureClass",

&weight);

QbQuerySetFeatureWeight

350

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbQueryStringSearch

Table

216.

The

extenders

that

support

QbQueryStringSearch

Image

Audio

Video

X

Searches

the

QBIC

catalog

for

images

that

match

the

search

criteria

contained

in

a

query

string.

The

results,

which

include

the

image

handles

and

their

QBIC

search

scores,

are

stored

in

a

result

array

in

the

client

memory.

They

are

sorted

according

to

their

scores.

Authorization

v

SELECT

privilege

on

the

QBIC

catalog

tables

v

SELECT

privilege

on

administrative

support

tables

for

any

handles

specified

in

the

query

v

Authority

to

reference

files

specified

in

the

query

Library

file

Table

217.

The

query

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbQueryStringSearch(

char

*queryString,

char

*tableName,

char

*columnName,

SQLINTEGER

maxReturns,

QbQueryScope*

scope,

SQLINTEGER

resultType,

SQLINTEGER*

count,

QbResult*

returns

);

Parameters

queryString

(in)

The

query

string.

tableName

(in)

The

name

of

the

table

containing

the

column

of

images

you

want

to

search.

columnName

(in)

The

name

of

the

image

column.

The

column

must

be

enabled

for

image

data.

maxReturns

(in)

The

maximum

number

of

images

you

want

returned.

scope

(in)

(Reserved)

Must

be

set

to

0

(NULL).

QbQueryStringSearch

Chapter

14.

Application

programming

interfaces

351

resultType

(in)

(Reserved)

Must

be

set

to

qbiArray.

count

(out)

The

pointer

to

the

number

of

images

returned.

If

zero

is

returned,

make

sure

the

image

column

is

cataloged

for

all

the

features

in

the

query

string.

returns

(out)

The

pointer

to

the

array

of

QbResult

structures

that

hold

the

returned

results.

Make

sure

you

allocate

the

buffer

large

enough

to

hold

all

the

results

you

expect.

Error

codes

qbiECinvalidQueryString

The

query

string

you

specified

is

invalid.

Examples

Query

the

cataloged

images

in

the

picture

column

of

the

employee

table.

Make

sure

that

no

more

than

six

images

are

returned:

#include

<dmbqbapi.h>

rc

=

QbQueryStringSearch("QbColorFeatureClass

color=<255,

0,

0>"

"employee",

"picture",

6,

0,

qbiArray,

&count,

&returns);

QbQueryStringSearch

352

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbReCatalogColumn

Table

218.

The

extenders

that

support

QbReCatalogColumn

Image

Audio

Video

X

Reanalyze

all

existing

images

in

the

opened

QBIC

catalog

for

a

new

feature.

The

default

parameters

of

the

features

are

used.

Use

this

API

when

you

add

a

new

feature

to

a

catalog

that

already

has

images.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

a

user

with

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER

and

SELECT

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Library

file

Table

219.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbReCatalogColumn

(

QbCatalogHandle

cHdl

);

Parameters

cHdl

(in)

A

pointer

to

the

handle

of

the

catalog.

Error

codes

qbicECIvalidHandle

The

catalog

handle

is

not

valid.

qbicECInvalidCatalog

The

specified

handle

or

table

column

is

not

valid

for

the

catalog.

qbicECCatalog

Errors

Errors

occurred

while

cataloging

individual

images,

these

error

were

logged.

Rollback

not

incurred.

QbReCatalogColumn

Chapter

14.

Application

programming

interfaces

353

qbicECImageNotFound

The

image

cannot

be

found

or

accessed.

qbicECCatalogRO

The

catalog

is

read-only.

qbicECSQLError

An

SQL

error

occurred.

Examples

Reanalyze

all

existing

images

in

the

opened

QBIC

catalog

for

a

new

feature:

#include

<dmbqbapi.h>

rc

=

QbReCatalogColumn(CatHdl);

QbReCatalogColumn

354

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

QbRemoveFeature

Table

220.

The

extenders

that

support

QbRemoveFeature

Image

Audio

Video

X

Deletes

the

specified

feature

from

the

opened

catalog.

This

API

can

roll

back

the

unit

of

work

in

response

to

a

severe

error,

or

if

the

steps

in

a

multiple

step

job

are

not

completed.

As

a

result,

uncommitted

work

will

be

lost.

In

general,

this

API

should

exist

in

its

own

unit

of

work.

Authorization

Alter

Library

file

Table

221.

The

image

API

file

z/OS

AIX

Windows

Solaris

DMBQBAPI

libdmbqbapi.a

dmbqbapi.lib

libdmbqbapi.so

Include

file

dmbqbapi.h

Syntax

SQLRETURN

QbRemoveFeature(

QbCatalogHandle

cHdl,

char

*featureName

);

Parameters

cHdl

(in)

A

pointer

to

the

handle

of

the

catalog.

featureName

(in)

The

name

of

the

feature.

Error

codes

qbicECIvalidHandle

The

catalog

handle

is

not

valid.

qbicECCatalogReadOnly

The

catalog

is

open

for

read

only.

qbicECFeatureNotFound

The

feature

is

not

in

the

catalog.

qbiECinvalidFeatureClass

The

feature

you

specified

is

not

a

valid

name

format.

Examples

Remove

the

QbColorHistogramFeatureClass

feature

from

the

catalog

identified

by

the

handle

CatHdl:

QbRemoveFeature

Chapter

14.

Application

programming

interfaces

355

#include

<dmbqbapi.h>

rc=QbRemoveFeature(CatHdl,

"QbColorHistogramFeatureClass");

QbRemoveFeature

356

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

15.

Administration

commands

for

the

client

This

chapter

describes

how

to

enter

DB2

Extender

administration

commands

for

the

client.

It

also

gives

reference

information

about

each

DB2

Extender

administration

command

for

the

client.

Entering

DB2

Extender

administration

commands

You

can

submit

DB2

Extender

administration

commands

to

the

db2ext

command-line

processor

in

interactive

mode

or

for

workstation

clients

only,

in

command

mode.

Interactive

mode

is

characterized

by

the

db2ext

prompt.

In

this

mode,

you

can

enter

only

DB2

Extender

administration

commands.

In

command

mode,

you

enter

commands

from

the

operating

system

command

prompt;

you

can

enter

DB2

Extender

commands

as

well

as

DB2

commands

and

operating

system

commands.

Do

not

enter

DB2

Extender

commands

from

the

workstation

DB2

command

prompt

or

the

MVS

TSO

DSN

command

processor.

To

start

the

db2ext

command-line

processor

in

interactive

mode,

do

the

following:

Table

222.

Entering

DB2

Extender

administration

commands

Client

Action

AIX,

Solaris

Enter

the

DB2EXT

command

from

the

operating

system

command

prompt.

Windows

XP,

Windows

2000,

Windows

NT

Double-click

on

the

DB2EXT

Command

Line

Processor

icon

in

the

DB2

Extenders

folder,

or

enter

the

DB2EXT

command

from

the

DB2

command

window.

OpenEdition

Issue

the

command:

db2ext

-a

subsystem_ID

where

subsytem_ID

is

the

identification

of

the

pertinent

DB2

subsystem

(for

example,

V61A).

TSO

Issue

the

TSO

call:

call

’loadlib’

’-a

subsystem_ID’

asis

where

loadlib

is

the

load-member

specification

for

the

db2ext-command

line

processor,

for

example,

dmb.v61a.Loadlib(db2ext),

and

subsystem_ID

is

the

identification

of

the

pertinent

DB2

subsystem

(for

example,

V61A).

To

end

interactive

mode,

enter

the

quit

or

terminate

command.

The

quit

command

ends

interactive

mode

but

maintains

the

current

connection

to

DB2.

The

terminate

command

ends

interactive

mode

and

drops

the

current

connection

to

DB2.

To

submit

DB2

Extender

commands

in

command

mode

(workstation

client

only),

enter

them

from

the

operating

system

command

line.

You

must

precede

each

DB2

Extender

command

with

db2ext,

for

example:

db2ext

enable

server

for

db2image

©

Copyright

IBM

Corp.

1998,

2001

357

Getting

online

help

for

DB2

Extender

commands

To

get

online

help

for

all

the

DB2

Extender

commands,

enter:

db2ext

?

358

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

ADD

QBIC

FEATURE

Table

223.

The

extenders

that

support

the

ADD

QBIC

FEATURE

Image

Audio

Video

X

Creates

a

feature

table

for

the

specified

feature

in

the

current

catalog.

Existing

images

in

the

catalog

are

not

automatically

reanalyzed

by

the

Image

Extender.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER

and

SELECT

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Command

syntax

��

ADD

QBIC

FEATURE

feature_name

��

Command

parameters

feature_name

The

name

of

the

feature

you

are

adding

to

the

QBIC

catalog.

The

following

features

are

supplied

with

the

Image

extender:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Examples

Add

the

QbColorFeatureClass

feature

to

the

currently

opened

catalog:

add

qbic

feature

qbcolorfeatureclass

Usage

notes

Connect

to

the

database

before

using

this

command.

The

catalog

must

be

open.

ADD

QBIC

FEATURE

Chapter

15.

Administration

commands

for

the

client

359

CATALOG

QBIC

COLUMN

Table

224.

The

extenders

that

support

CATALOG

QBIC

COLUMN

Image

Audio

Video

X

Catalogs

the

images

in

the

image

column

and

updates

the

currently

open

QBIC

catalog

with

feature

data.

You

can

update

the

catalog

for

all

the

images

in

the

image

column

or

for

only

the

new

images

added

to

the

image

column

since

the

last

time

the

catalog

was

analyzed.

Authorization

v

SYSADM

v

DBADM

on

the

database

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

SELECT

privilege

on

the

user

table

v

Table

owner

v

Select

privilege

on

the

user

table

and

SELECT,

INSERT,

UPDATE,

and

DELETE

privileges

on

the

administrative

support

tables

for

the

enabled

table

and

the

QBIC

catalog

Command

syntax

��

CATALOG

QBIC

COLUMN

FOR

NEW

ALL

��

Command

parameters

None.

Examples

Catalog

the

new

images

in

to

the

current

catalog,

that

is,

the

images

that

have

not

been

cataloged:

catalog

qbic

column

for

new

Usage

notes

When

NEW

is

specified,

the

Image

Extender

updates

the

catalog

only

with

the

images

that

have

not

been

cataloged.

When

ALL

is

specified,

the

Image

Extender

analyzes

every

image

in

the

image

column

for

the

current

catalog.

NEW

is

the

default.

Connect

to

the

database

before

using

this

command.

The

catalog

must

be

open.

CATALOG

QBIC

COLUMN

360

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

CLOSE

QBIC

CATALOG

Table

225.

The

extenders

that

support

CLOSE

QBIC

CATALOG

Image

Audio

Video

X

Closes

a

QBIC

catalog.

Authorization

None.

Command

syntax

��

CLOSE

QBIC

CATALOG

��

Command

parameters

None.

Examples

Close

the

current

catalog:

close

qbic

catalog

Usage

notes

The

QBIC

catalog

must

be

open.

CLOSE

QBIC

CATALOG

Chapter

15.

Administration

commands

for

the

client

361

CREATE

QBIC

CATALOG

Table

226.

The

extenders

that

support

CREATE

QBIC

CATALOG

Image

Audio

Video

X

Creates

a

QBIC

catalog

in

the

current

database

for

the

specified

DB2IMAGE

column.

The

extender

automatically

generates

the

catalog

name.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER

and

SELECT

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Command

syntax

��

CREATE

QBIC

CATALOG

table_name

column_name

OFF

USING

tablespace_name

��

Command

parameters

table_name

The

name

of

the

DB2IMAGE

enabled

table.

column_name

The

name

of

the

DB2IMAGE

enabled

column.

OFF

Images

are

manually

cataloged.

tablespace_name

The

table

space

specification

and

index

options

for

the

QBIC

Catalog.

The

specification

has

four

parts:

v

The

name

of

the

table

space

for

the

catalog

tables

that

contain

feature

data.

The

table

space

must

be

specified.

The

table

space

should

be

a

segmented

table

space.

v

For

the

index

created

on

the

catalog

tables,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

This

specification

is

optional.

You

get

defaults

if

you

do

not

specify

this

part.

v

The

name

of

the

table

space

for

the

catalog

log

table.

The

table

space

can

be

a

simple

table

space

or

a

segmented

table

space.

This

specification

is

optional.

If

you

do

not

specify

a

table

space

for

the

log

table,

the

table

space

specified

for

the

feature

data

tables

is

used.

v

For

the

index

created

on

the

log

data

table,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

or

index

options

for

type

2

non-partitioned

indexes.

This

specification

is

optional.

You

get

defaults

if

you

do

not

specify

this

part.

CREATE

QBIC

CATALOG

362

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Examples

Create

a

QBIC

catalog

for

the

picture

column

in

the

employee

table.

Use

table

space

qbtbspace

for

the

catalog:

create

qbic

catalog

employee

picture

off

qbtbspace

Usage

notes

Connect

to

the

database

before

using

this

command.

CREATE

QBIC

CATALOG

Chapter

15.

Administration

commands

for

the

client

363

DELETE

QBIC

CATALOG

Table

227.

The

extenders

that

support

DELETE

QBIC

CATALOG

Image

Audio

Video

X

Deletes

a

QBIC

catalog,

including

all

of

the

QBIC-search

support

data.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER

and

SELECT

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Command

syntax

��

DELETE

QBIC

CATALOG

table_name

column_name

��

Command

parameters

table_name

The

name

of

the

DB2IMAGE

enabled

table.

column_name

The

name

of

the

DB2IMAGE

enabled

column.

Examples

Delete

the

catalog

associated

with

the

picture

column

in

the

employee

table:

delete

qbic

catalog

employee

picture

Usage

notes

Connect

to

the

database

before

using

this

command.

DELETE

QBIC

CATALOG

364

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DISABLE

COLUMN

Table

228.

The

extenders

that

support

DISABLE

COLUMN

Image

Audio

Video

X

X

X

Disables

the

specified

column

from

storing

the

specified

media

data.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Command

syntax

��

DISABLE

COLUMN

table_name

col_name

FOR

extender_name

��

Command

parameters

table_name

The

name

of

the

table

in

the

current

database

server.

col_name

The

name

of

the

column

you

want

to

disable.

extender_name

The

name

of

the

extender

for

which

you

want

to

disable

the

column.

Valid

extender

names

are

db2image,

db2audio,

and

db2video.

Examples

Disable

the

column

photo

in

table

employee

so

that

it

cannot

hold

image

data:

disable

column

employee

photo

for

db2image

Usage

notes

Connect

to

the

database

before

using

this

command.

When

you

disable

a

column:

v

The

column

can

not

store

data

for

the

specified

extender.

This

does

not

affect

whether

other

columns

in

the

table

are

enabled

or

disabled

for

multimedia

data

types.

v

The

contents

of

the

column

entries

are

set

to

NULL

and

the

corresponding

rows

in

the

administrative

tables

are

deleted.

v

The

triggers

associated

with

the

column

are

dropped.

DISABLE

COLUMN

Chapter

15.

Administration

commands

for

the

client

365

DISABLE

SERVER

Table

229.

The

extenders

that

support

DISABLE

SERVER

Image

Audio

Video

X

X

X

Disables

the

current

database

server

from

storing

media

data.

Authorization

v

SYSADM

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS

Command

syntax

��

DISABLE

SERVER

FOR

�

,

extender_name

��

Command

parameters

extender_name

The

name

of

the

extender

for

which

you

want

to

disable

the

current

database

server.

Valid

extender

names

are

db2image,

db2audio,

and

db2video.

Examples

Disable

the

current

database

server

from

holding

image

data:

disable

server

for

db2image

Usage

notes

Connect

to

the

database

server

before

using

this

command.

When

you

disable

a

database

server,

the

system:

v

Disables

all

the

tables

that

are

enabled

for

the

specified

extender.

v

Drops

the

UDFs

and

administrative

support

tables

for

the

specified

extender.

DISABLE

SERVER

366

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DISABLE

TABLE

Table

230.

The

extenders

that

support

DISABLE

TABLE

Image

Audio

Video

X

X

X

Disables

the

specified

table

from

storing

media

data.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

or

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Command

syntax

��

DISABLE

TABLE

table_name

FOR

�

,

extender_name

��

Command

parameters

table_name

The

name

of

the

table

you

want

to

disable

in

the

current

database

server.

extender_name

The

name

of

the

extender

for

which

you

want

to

disable

the

table.

Valid

extender

names

are

db2image,

db2audio,

and

db2video.

Examples

Disable

the

table

employee

from

holding

image

data:

disable

table

employee

for

db2image

Usage

notes

Connect

to

the

database

server

before

using

this

command.

When

you

disable

a

table,

the

system:

v

Disables

all

the

columns

in

the

table

that

are

enabled

for

the

specified

extender.

v

Drops

the

administrative

support

tables

associated

with

the

table.

DISABLE

TABLE

Chapter

15.

Administration

commands

for

the

client

367

ENABLE

COLUMN

Table

231.

The

extenders

that

support

ENABLE

COLUMN

Image

Audio

Video

X

X

X

Enables

the

specified

column

to

store

media

data.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Command

syntax

��

ENABLE

COLUMN

table_name

col_name

FOR

extender_name

��

Command

parameters

table_name

The

name

of

the

table

in

the

current

database

server.

col_name

The

name

of

the

column

you

want

to

enable.

extender_name

The

name

of

the

extender

for

which

you

want

to

enable

the

table.

Valid

extender

names

are

db2image,

db2audio,

and

db2video.

Examples

Enable

the

column

photo

in

table

employee

to

hold

image

data:

enable

column

employee

photo

for

db2image

Usage

notes

Connect

to

the

database

server

before

using

this

command.

ENABLE

COLUMN

368

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

ENABLE

SERVER

Table

232.

The

extenders

that

support

ENABLE

SERVER

Image

Audio

Video

X

X

X

Enables

the

current

database

server

to

store

media

data

using

the

specified

table

space.

Authorization

v

SYSADM

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS

Command

syntax

��

ENABLE

SERVER

FOR

�

,

extender_name

USING

tablespace_name

�

�

WLM

ENVIRONMENT

wlm_names

EXTERNAL

SECURITY

external_security

��

Command

parameters

extender_name

The

name

of

the

extender

for

which

you

want

to

enable

the

current

database

server.

Valid

extender

names

are

db2image,

db2audio,

and

db2video.

tablespace_name

The

name

of

the

table

spaces

in

which

administrative

support

tables

and

their

indexes

are

stored.

The

table

space

specification

has

two

parts

as

follows:

v

The

name

of

the

table

space.

The

name

must

be

the

name

of

a

table

space

that

is

defined

in

the

MMDBSYS

database.

(The

MMDBSYS

database

is

created

as

part

of

the

setup

that

is

done

after

the

DB2

Extenders

are

installed.)

For

further

information

about

DB2

Extender

installation

and

setup

procedures,

see

the

Program

Directory.)

If

you

do

not

specify

a

table

space

name,

DB2

creates

a

table

space

in

the

MMDBSYS

database

for

each

global

administrative

support

table.

v

Any

combination

of

using-block,

free

block,

gbpcache-block,

and

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

For

details

about

these

blocks

and

index

options,

see

the

description

of

the

CREATE

INDEX

command

in

the

SQL

Reference.

The

parts

of

the

table

space

specification

are

separated

by

a

comma.

wlm_names

WLM

environment

names.

A

maximum

of

two

can

be

specified

(separated

by

a

comma);

at

least

one

WLM

environment

name

must

be

specified.

If

only

one

is

specified,

then

all

extender

UDFs

execute

in

that

WLM

environment.

If

two

WLM

environments

are

specified,

the

second

is

used

to

ENABLE

SERVER

Chapter

15.

Administration

commands

for

the

client

369

execute

UDFs

that

import

or

export

objects

(such

as

DB2AUDIO,

CONTENT,

and

REPLACE);

the

first

WLM

environment

is

used

for

attribute

retrieval

UDFs

(such

as

FORMAT

and

DURATION).

external_security

Indicates

how

the

UDFs

interact

with

an

external

security

product,

such

as

RACF,

to

control

access

to

files.

UDFs

that

use

files

include

import

and

export

UDFs

such

as

DB2AUDIO

and

CONTENT,

they

do

not

include

attribute

retrieval

UDFs

such

as

FORMAT.

You

can

specify

USER

or

DB2.

If

you

specify

USER,

each

UDF

executes

as

if

it

has

the

user

ID

(that

is,

the

primary

authorization

ID)

of

the

process

that

invoked

it,

and

has

permissions

as

defined

for

that

user

ID

on

the

z/OS

server.

If

you

specify

DB2,

UDF

access

to

files

is

performed

using

the

authorization

ID

established

for

the

WLM

environment

that

executes

file-accessing

UDFs.

All

extender

UDF

invokers

have

access

to

the

same

files.

DB2

is

the

default.

Examples

Enable

the

current

database

server

to

hold

image

data

in

table

space

MMTBSYSG.

Specify

WLM

environment

WLMENV1

and

EXTERNAL

SECURITY

DB2.

Use

the

default

for

the

type

2

non-partitioned

index

spaces:

enable

server

for

db2image

using

mmtbsysg

wlm

environment

wlmenv1

external

security

db2

Usage

notes

Connect

to

the

database

server

before

using

this

command.

ENABLE

SERVER

370

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

ENABLE

TABLE

Table

233.

The

extenders

that

support

ENABLE

TABLE

Image

Audio

Video

X

X

X

Enables

the

specified

table

to

store

media

data

using

the

specified

table

space.

Authorization

v

SYSADM

v

DBADM

with

GRANT

privilege,

and

CREATEIN

and

DROPIN

privilege

on

the

schema

MMDBSYS

v

User

ID

of

MMDBSYS

with

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

TRIGGER,

SELECT,

UPDATE,

and

DELETE

privileges

on

the

user

table;

SQL

authorization

ID

for

the

process

has

CREATAB

privilege

on

the

target

database

or

is

the

DBADM

for

the

database

Use

privilege

is

also

required

on

table

spaces

and

buffer

pools

specified

in

the

command

parameters.

Command

syntax

��

ENABLE

TABLE

table_name

FOR

extender_name

USING

tablespace_name

��

Command

parameters

table_name

The

name

of

the

table

in

the

current

database

you

want

to

enable.

extender_name

The

name

of

the

extender

for

which

you

want

to

enable

the

table.

Valid

extender

names

are

db2image,

db2audio,

and

db2video.

tablespace_name

The

name

of

the

table

spaces

into

which

administrative

support

tables

and

LOB

data

are

stored.

The

table

space

specification

has

four

parts

as

follows:

v

The

name

of

the

table

space

for

the

administrative

support

tables.

You

must

specify

this

table

space.

A

32

KB

page

buffer

pool

for

the

table

space

isrequired

v

For

the

table

space

for

administrative

support

tables,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

and

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

v

The

name

of

the

table

space

for

LOB

data.

You

must

specify

this

table

space.

v

For

the

table

space

for

LOB

data,

any

combination

of

the

using-block,

free

block,

gbpcache-block,

and

index

options

for

type

2

non-partitioned

indexes.

You

can

specify

a

NULL

value

for

defaults.

The

parts

of

the

table

space

specification

are

separated

by

commas.

ENABLE

TABLE

Chapter

15.

Administration

commands

for

the

client

371

Examples

Enable

the

table

employee

to

hold

image

data

in

table

space

MYTS.

Use

the

table

space

MYLOBTS

for

LOB

data.

Use

defaults

for

block

and

index

specifications:

enable

table

employee

for

db2image

using

myts,,mylobts

Usage

notes

Connect

to

the

database

server

before

using

this

command.

ENABLE

TABLE

372

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

GET

EXTENDER

STATUS

Table

234.

The

extenders

that

support

GET

EXTENDER

STATUS

Image

Audio

Video

X

X

X

Displays

the

names

of

the

extenders,

if

any,

for

which

a

column,

table,

or

the

current

database

server

is

enabled.

Authorization

None

Command

syntax

��

GET

EXTENDER

STATUS

IN

table_name

COLUMN

table_name

col_name

��

Command

parameters

table_name

The

name

of

the

table

in

the

current

database.database

server.

col_name

The

name

of

the

column.

Examples

Display

the

names

of

the

enabled

extenders

in

the

database

server:

get

extender

status

Display

the

status

of

the

table

employee:

get

extender

status

in

employee

Display

the

status

of

the

column

ADDRESS

in

the

table

employee:

get

extender

status

column

employee

address

Usage

notes

Connect

to

the

database

server

before

using

this

command.

GET

EXTENDER

STATUS

Chapter

15.

Administration

commands

for

the

client

373

GET

INACCESSIBLE

FILES

Table

235.

The

extenders

that

support

GET

INACCESSIBLE

FILES

Image

Audio

Video

X

X

X

List

all

media

files

that

are

inaccessible

and

referenced

by

a

table,

tables

with

a

specific

qualifier,

or

all

the

tables

in

the

current

database

server.

Authorization

SYSADM,

or

SELECT

privilege

on

enabled

columns

in

all

searched

user

tables

and

associated

administrative

support

tables

Command

syntax

��

GET

INACCESSIBLE

FILES

USER

user_ID

IN

table_name

FOR

�

,

extender_name

��

Command

parameters

user_ID

The

qualifier

of

the

tables

in

the

current

database

server

whose

inaccessible

files

you

want

to

list.

table_name

The

name

of

the

table

in

the

current

database

server

whose

inaccessible

files

you

want

to

list.

extender_name

The

name

of

the

extender.

Valid

extender

names

are

db2image,

db2audio,

and

db2video.

Examples

List

all

the

image

files

referenced

by

tables

in

the

database

server,

but

are

inaccessible:

get

inaccessible

files

for

db2image

List

all

the

image

files

referenced

in

tables

with

the

qualifier

anita,

but

are

inaccessible:

get

inaccessible

files

user

anita

for

db2image

List

all

the

image

files

referenced

by

entries

in

the

employee

table,

but

are

inaccessible:

get

inaccessible

files

in

employee

FOR

db2image

Usage

notes

Connect

to

the

database

server

before

using

this

command.

GET

INACCESSIBLE

FILES

374

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

If

you

specify

a

table

the

command

lists

inaccessible

files

for

that

table.

If

you

specify

a

qualifier,

the

command

lists

inaccessible

files

for

only

those

tables

with

that

qualifier.

If

you

specify

neither,

the

command

lists

inaccessible

files

for

all

the

tables

in

the

current

database

server.

GET

INACCESSIBLE

FILES

Chapter

15.

Administration

commands

for

the

client

375

GET

QBIC

CATALOG

INFO

Table

236.

The

extenders

that

support

GET

QBIC

CATALOG

INFO

Image

Audio

Video

X

Returns

the

following

information

about

the

currently

opened

catalog:

v

The

name

of

the

user

table

and

the

image

column

with

which

the

catalog

is

associated.

v

The

names

of

the

features

in

the

catalog.

v

The

number

of

features

in

the

catalog.

v

The

manual

cataloging

indicator.

Authorization

v

SYSADM

v

DBADM

on

the

database

v

User

ID

of

MMDBSYS

or

a

user

with

a

secondary

authorization

ID

of

MMDBSYS;

MMDBSYS

ID

has

SELECT

privilege

on

the

user

table

v

SELECT

privilege

on

the

user

table

and

SELECT

privilege

on

the

QBIC

catalog

tables

Command

syntax

��

GET

QBIC

CATALOG

INFO

��

Command

parameters

None.

Examples

Get

information

about

the

currently

opened

QBIC

catalog:

get

qbic

catalog

info

Usage

notes

Connect

to

the

database

before

using

this

command.

The

catalog

must

be

open.

GET

QBIC

CATALOG

INFO

376

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

GET

REFERENCED

FILES

Table

237.

The

extenders

that

support

GET

REFERENCED

FILES

Image

Audio

Video

X

X

X

List

all

media

files

and

the

column

names

that

reference

them

in

a

table,

tables

with

a

specific

qualifier,

or

all

the

tables

in

the

current

database

server.

Authorization

For

all

tables

in

the

current

database

server,

that

is,

if

you

do

not

specify

USER

or

IN:

SYSADM,

SYSCTRL,

SYSMAINT,

DBADM

For

a

particular

table

(if

you

specify

IN)

or

tables

that

belong

to

a

qualifier

(if

you

specify

USER):

Select

Command

syntax

��

GET

REFERENCED

FILES

USER

user_ID

IN

table_name

FOR

�

,

extender_name

��

Command

parameters

user_ID

The

qualifier

of

the

tables

in

the

database

server

whose

referenced

files

you

want

to

list.

The

command

searches

only

tables

with

that

qualifier.

table_name

The

name

of

the

table

in

the

current

database

whose

referenced

files

you

want

to

list.

The

command

searches

that

table

only.

extender_name

The

name

of

the

extender.

Valid

extender

names

are

db2image,

db2audio,

and

db2video.

Examples

List

all

the

image

files

referenced

by

table

entries

in

all

the

tables

in

the

database

server:

get

referenced

files

for

db2image

List

all

the

image

files

referenced

by

entries

in

tables

with

the

qualifier

anita:

get

referenced

files

user

anita

for

db2image

List

all

the

image

files

referenced

by

entries

in

the

employee

table:

get

referenced

files

in

employee

for

db2image

Usage

notes

Connect

to

the

database

server

before

using

this

command.

GET

REFERENCED

FILES

Chapter

15.

Administration

commands

for

the

client

377

If

you

do

not

specify

any

parameters,

the

command

searches

all

the

tables

in

the

database

server.

GET

REFERENCED

FILES

378

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

GRANT

Table

238.

The

extenders

that

support

GRANT

Image

Audio

Video

X

X

X

Grants

privileges

on

administrative

support

tables

to

users,

including

privileges

on

administrative

support

tables

for

QBIC

catalogs.

Authorization

SYSADM,

DBADM

Command

syntax

��

GRANT

SELECT

UPDATE

FOR

ALL

extender_name

ON

table_name

TO

�

�

PUBLIC

user_ID

USER

��

Command

parameters

SELECT

Grants

SELECT

privilege

on

all

administrative

support

tables

associated

with

the

user

table

for

the

specified

extenders.

If

the

Image

Extender

is

specified

(DB2Image),

also

grants

SELECT

privilege

on

the

administrative

support

tables

for

the

QBIC

catalogs

associated

with

the

user

table.

UPDATE

If

the

Image

Extender

is

specified

(DB2Image),

grants

INSERT,

UPDATE,

and

DELETE

privileges

on

the

QBIC

catalog

tables

associated

with

the

user

table.

ALL

Grants

the

specified

privileges

on

administrative

support

tables

associated

with

the

user

table

for

the

Image,

Audio,

and

Video

Extenders.

extender_name

The

name

of

an

extender

(DB2Image,

DB2Audio,

or

DB2Video).

The

specified

privileges

are

granted

on

administrative

support

tables

associated

with

the

specified

extender.

extender_name

The

name

of

the

user

table.

PUBLIC

Grants

the

specified

privileges

to

all

users.

user_ID

The

user

ID

to

which

the

privileges

will

be

granted.

Examples

Grant

SELECT

privilege

on

the

administrative

support

tables

for

the

Image

Extender

associated

with

the

employee

table,

including

the

administrative

support

tables

for

the

QBIC

catalogs.

Grant

the

privilege

to

user

ID

ajones:

grant

select

for

db2image

on

employee

to

user

ajones

GRANT

Chapter

15.

Administration

commands

for

the

client

379

Usage

notes

GRANT

380

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

OPEN

QBIC

CATALOG

Table

239.

The

extenders

that

support

OPEN

QBIC

CATALOG

Image

Audio

Video

X

Opens

the

catalog

for

the

specified

DB2IMAGE

column.

The

database

will

always

try

to

open

the

catalog

with

update

mode.

If

the

catalog

is

already

in

update

mode,

the

catalog

will

be

opened

in

read

mode.

Authorization

Connect

Command

syntax

��

OPEN

QBIC

CATALOG

table_name

column_name

��

Command

parameters

table_name

The

name

of

the

DB2IMAGE

enabled

table.

column_name

The

name

of

the

DB2IMAGE

enabled

column.

Examples

Open

the

QBIC

catalog

for

the

picture

column

in

the

employee

table:

open

qbic

catalog

employee

picture

Usage

notes

Connect

to

the

database

before

using

this

command.

This

command

will

cause

any

open

catalog

to

close.

OPEN

QBIC

CATALOG

Chapter

15.

Administration

commands

for

the

client

381

QUIT

Table

240.

The

extenders

that

support

QUIT

Image

Audio

Video

X

X

X

Shuts

down

the

db2ext

command-line

processor

for

command

entry

in

interactive

mode.

For

z/OS

clients,

the

connection

to

DB2

is

dropped.

For

workstation

clients,

the

connection

to

DB2

is

maintained,

so

you

can

still

submit

commands

to

the

db2ext

command-line

processor

in

command

mode.

Authorization

None

Command

syntax

��

QUIT

��

Command

parameters

None.

Examples

Shut

down

the

command-line

interface

for

interactive

mode:

quit

Usage

notes

For

z/OS

clients,

QUIT

drops

the

connection

to

DB2.

For

workstation

clients,

QUIT

maintains

the

connection

to

DB2.

QUIT

382

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

REMOVE

QBIC

FEATURE

Table

241.

The

extenders

that

support

REMOVE

QBIC

FEATURE

Image

Audio

Video

X

Deletes

the

feature

table

of

the

specified

feature

from

the

opened

catalog.

Authorization

Alter,

Control,

SYSADM,

DBADM

Command

syntax

��

REMOVE

QBIC

FEATURE

feature_name

��

Command

parameters

feature_name

The

name

of

the

feature

you

are

removing

from

the

QBIC

catalog.

The

following

features

are

supplied

with

the

Image

extender:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Examples

Remove

the

QbColorFeatureClass

feature

from

the

currently

opened

catalog:

remove

qbic

feature

qbcolorfeatureclass

Usage

notes

Connect

to

the

database

before

using

this

command.

The

catalog

must

be

open.

REMOVE

QBIC

FEATURE

Chapter

15.

Administration

commands

for

the

client

383

REVOKE

Table

242.

The

extenders

that

support

REVOKE

Image

Audio

Video

X

X

X

Revokes

privileges

on

administrative

support

tables

to

users,

including

privileges

on

administrative

support

tables

for

QBIC

catalogs.

Authorization

SYSADM,

DBADM

Command

syntax

��

REVOKE

SELECT

UPDATE

FOR

ALL

extender_name

ON

table_name

FROM

�

�

PUBLIC

user_ID

USER

��

Command

parameters

SELECT

Revokes

SELECT

privilege

on

all

administrative

support

tables

associated

with

the

user

table

for

the

specified

extenders.

If

the

Image

Extender

is

specified

(DB2Image),

also

revokes

SELECT

privilege

on

the

QBIC

catalog

tables

associated

with

the

user

table.

UPDATE

Revokes

INSERT,

UPDATE,

and

DELETE

privileges

on

the

administrative

support

tables

for

the

QBIC

catalogs

associated

with

the

user

table.

ALL

Revokes

the

specified

privileges

on

administrative

support

tables

associated

with

the

user

table

for

the

Image,

Audio,

and

Video

Extenders.

extender_name

The

name

of

an

extender

(DB2Image,

DB2Audio,

or

DB2Video).

The

specified

privileges

are

revoked

on

administrative

support

tables

associated

with

the

specified

extender.

extender_name

The

name

of

the

user

table.

PUBLIC

Revokes

the

specified

privileges

foro

all

users.

user_ID

The

user

ID

to

which

the

privileges

will

be

revoked.

Examples

Revoke

SELECT

privilege

on

the

administrative

support

tables

for

the

Image

Extender

associated

with

the

employee

table,

including

the

administrative

support

tables

for

the

QBIC

catalogs.

Revoke

the

privilege

for

user

ID

ajones:

revoke

select

for

db2image

on

employee

from

user

ajones

REVOKE

384

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Usage

notes

REVOKE

Chapter

15.

Administration

commands

for

the

client

385

TERMINATE

Table

243.

The

extenders

that

support

TERMINATE

Image

Audio

Video

X

X

X

Shuts

down

the

db2ext

command-line

processor

and

drops

the

connection

to

DB2.

Authorization

None

Command

syntax

��

TERMINATE

��

Command

parameters

None.

Examples

Shut

down

the

db2ext

command-line

processor:

quit

Usage

notes

TERMINATE

drops

the

connection

to

the

database

server.

TERMINATE

386

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Chapter

16.

Diagnostic

information

All

embedded

SQL

statements

in

your

program

and

DB2

CLI

calls

in

your

program,

including

those

that

invoke

DB2

extender

UDFs,

generate

codes

that

indicate

whether

the

embedded

SQL

statement

or

DB2

CLI

call

executed

successfully.

Other

DB2

extender

APIs,

such

as

administrative

APIs,

also

return

codes

that

indicate

success

or

lack

of

success.

Your

program

should

check

and

respond

to

these

return

codes.

Your

program

can

also

retrieve

information

that

supplements

these

codes.

This

includes

SQLSTATE

information

and

error

messages.

You

can

use

this

diagnostic

information

to

isolate

and

fix

problems

in

your

program.

Occasionally

the

source

of

a

problem

cannot

be

easily

diagnosed.

In

these

cases,

you

might

need

to

provide

information

to

service

personnel

to

isolate

and

fix

the

problem.

The

DB2

Extenders

include

a

trace

facility

that

records

extender

activity.

The

trace

information

can

be

valuable

input

to

service

personnel.

You

should

use

the

trace

facility

only

under

instruction

from

IBM

service

personnel.

This

chapter

describes

how

to

access

this

diagnostic

information.

It

describes:

v

How

to

handle

DB2

extender

UDF

return

codes

and

API

return

codes.

v

How

to

control

tracing

It

also

lists

and

describes

the

SQLSTATEs

and

error

messages

that

can

be

returned

by

the

extenders.

Handling

UDF

return

codes

Embedded

SQL

statements

return

codes

in

the

SQLCODE,

SQLWARN,

and

SQLSTATE

fields

of

the

SQLCA

structure.

This

structure

is

defined

in

an

SQLCA

include

file.

(For

more

information

about

the

SQLCA

structure

and

SQLCA

include

file,

see

DB2

Application

Programming

and

SQL

Guide.)

DB2

CLI

calls

return

SQLCODE

and

SQLSTATE

values

that

you

can

retrieve

using

the

SQLError

function.

(For

more

information

about

retrieving

error

information

with

the

SQLError

function,

see

ODBC

Guide

and

Reference.)

An

SQLCODE

value

of

0

means

that

the

statement

ran

successfully

(with

possible

warning

conditions).

A

positive

SQLCODE

value

means

that

the

statement

was

successfully

run

but

with

a

warning.

(Embedded

SQL

statements

return

the

warning

associated

with

0

or

positive

SQLCODE

values

in

the

SQLWARN

field.)

A

negative

SQLCODE

value

means

that

an

error

condition

occurred.

DB2

associates

a

message

with

each

SQLCODE

value.

If

a

DB2

extender

UDF

encounters

a

warning

or

error

condition,

it

passes

associated

information

to

DB2

for

inclusion

in

the

SQLCODE

message.

SQLSTATE

values

contains

codes

that

supplement

the

SQLCODE

messages.

See

“SQLSTATE

codes”

on

page

388

for

a

description

of

each

SQLSTATE

code

returned

by

the

DB2

Extenders.

Embedded

SQL

statements

and

DB2

CLI

calls

that

invoke

DB2

extender

UDFs

might

return

SQLCODE

messages

and

SQLSTATE

values

that

are

unique

to

these

UDFs,

but

DB2

returns

these

values

in

the

same

way

as

it

does

for

other

©

Copyright

IBM

Corp.

1998,

2001

387

embedded

SQL

statements

or

other

DB2

CLI

calls.

Thus,

the

way

you

access

these

values

is

the

same

as

for

embedded

SQL

statements

or

DB2

CLI

calls

that

do

not

start

DB2

extender

UDFs.

See

“SQLSTATE

codes”

for

the

SQLSTATE

values

and

the

message

number

of

associated

messages

that

can

be

returned

by

the

Extenders.

See

“Messages”

on

page

392

for

information

about

each

message.

Handling

API

return

codes

Each

DB2

extender

API

call

returns

a

code.

A

return

code

of

0

indicates

that

the

API

call

was

processed

successfully.

A

return

code

other

than

0,

indicates

that

the

API

call

was

processed

successfully

but

encountered

a

warning

condition,

or

could

not

be

processed

successfully

because

of

an

error

condition.

Chapter

14,

“Application

programming

interfaces,”

on

page

219

lists

the

symbolic

value

for

and

describes

each

code

that

can

be

returned

by

the

DB2

extender

APIs.

You

can

retrieve

additional

information

about

errors

encountered

by

an

API.

Use

the

DBxGetError

API

to

retrieve

this

additional

information,

where

x

is

a

for

the

Audio

Extender,

i

for

the

Image

Extender,

and

v

for

the

Video

Extender.

The

DBxGetError

API

returns

the

SQL

error

code

and

associated

message

for

the

last

DB2

extender

API

that

encountered

an

error.

See

DB2

Messages

and

Codes

for

information

about

SQL

error

codes.

See

“Messages”

on

page

392

for

information

about

each

message

that

can

be

returned

by

the

DBxGetError

API.

For

example,

the

following

statements

in

a

C

application

program

enable

a

table

for

the

Audio

Extender

and

then

check

for

errors.

rc=DBaEnableTable((char

*)NULL,

"employee");

rc=DBaGetError(&errCode,

&errMsg);

SQLSTATE

codes

Table

244

lists

and

describes

the

SQLSTATE

values

that

can

be

returned

by

the

DB2

Extenders.

The

description

of

each

SQLSTATE

value

includes

its

symbolic

representation.

The

table

also

lists

the

message

number

associated

with

each

SQLSTATE

value.

See

“Messages”

on

page

392

for

information

about

each

message.

Table

244.

SQLSTATE

codes

and

associated

message

numbers

SQLSTATE

Message

No.

Description

00000

MMDB_SQLSTATE_OK

Successful

01H01

DMB0211W

MMDB_SQLSTATE_WARN_NO_OVERWRITE

The

file

overwrite

does

not

take

place

38A00

DMB0101E

MMDB_SQLSTATE_AUDIO_NULL_PARM

Input

parameter

to

the

UDF

cannot

be

null

38A02

DMB0209E

MMDB_SQLSTATE_AUDIO_OPEN_HDR_ERROR

Error

occurred

while

opening

audio

file

header

38A03

DMB0209E

MMDB_SQLSTATE_AUDIO_BAD_WAVE_HDR

Invalid

wave

file

supplied

38V00

DMB0101E

MMDB_SQLSTATE_VIDEO_NULL_PARM

Input

parameter

to

the

UDF

cannot

be

null

Handling

UDF

codes

388

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Table

244.

SQLSTATE

codes

and

associated

message

numbers

(continued)

SQLSTATE

Message

No.

Description

38V02

DMB0051E

MMDB_SQLSTATE_VIDEO_OPEN_HDR_ERROR

Error

occurred

while

opening

video

file

header

38V03

DMB0105E

MMDB_SQLSTATE_VIDEO_BAD_MPEG1_HDR

Invalid

mpeg1

file

supplied

38V04

DMB0104E

MMDB_SQLSTATE_VIDEO_BLOB_TOO_SHORT

Video

buffer

supplied

is

too

small

38V05

DMB0106E

MMDB_SQLSTATE_VIDEO_BAD_AVI_HDR

Invalid

AVI

file

supplied

38V07

DMB0106E

MMDB_SQLSTATE_VIDEO_BAD_QT_HDR

Invalid

Quicktime

file

supplied

38600

DMB0075E

DMB0101E

DMB0102E

DMB0103E

DMB0210E

MMDB_SQLSTATE_INVALID_INPUT

Input

parameter

to

the

UDF

is

not

valid

38601

DMB0009E

MMDB_SQLSTATE_MALLOC_FAIL

Memory

allocation

failed

38602

DMB0386E

MMDB_SQLSTATE_CANNOT_COLLOCATE

Cannot

collocate

with

user

data

38603

DMB0077E

MMDB_SQLSTATE_READ_FILE_FAIL

Cannot

read

from

file

38604

DMB0080E

MMDB_SQLSTATE_WRITE_FILE_FAIL

Cannot

write

to

file

38610

DMB0070E

MMDB_SQLSTATE_INVALID_HANDLE

Media

column

contains

invalid

data

38611

DMB0073E

MMDB_SQLSTATE_INVALID_SESSION_HANDLE

Invalid

UDF

session

handle

38612

DMB0074E

MMDB_SQLSTATE_INVALID_STATEMENT_HANDLE

Invalid

UDF

statement

handle

38613

DMB0083E

MMDB_SQLSTATE_INVALID_IMPORT_REQUEST

The

request

for

import

is

not

valid

38615

DMB0071E

MMDB_SQLSTATE_CONNECT_FAIL

Error

occurred

while

connecting

to

database

38617

DMB0071E

MMDB_SQLSTATE_ALLOC_STMT_FAIL

Error

occurred

while

allocating

a

new

statement

handle

38618

DMB0208E

DMB0138E

MMDB_SQLSTATE_FREE_STMT_FAIL

Error

occurred

while

freeing

statement

38619

DMB0208E

DMB0132E

MMDB_SQLSTATE_BIND_FAIL

Error

occurred

while

binding

38620

DMB0208E

MMDB_SQLSTATE_BIND_COLUMN_FAIL

Error

occurred

while

binding

a

column

38621

DMB0208E

MMDB_SQLSTATE_BIND_FILE_FAIL

Error

occurred

while

binding

file

38622

DMB0208E

DMB0132E

MMDB_SQLSTATE_SET_PARAM_FAIL

Error

occurred

while

setting

parameter

38623

DMB0208E

DMB0131E

MMDB_SQLSTATE_PREPARE_FAIL

Error

occurred

while

preparing

an

SQL

statement

SQLSTATEs

Chapter

16.

Diagnostic

information

389

Table

244.

SQLSTATE

codes

and

associated

message

numbers

(continued)

SQLSTATE

Message

No.

Description

38624

DMB0208E

DMB0133E

DMB0172E

MMDB_SQLSTATE_EXECUTE_FAIL

Error

occurred

while

executing

a

statement

38625

DMB0208E

DMB0133E

MMDB_SQLSTATE_EXEC_DIRECT_FAIL

Error

occurred

while

directly

executing

SQL

statement

in

UDF

38626

DMB0208E

DMB0133E

MMDB_SQLSTATE_FETCH_FAIL

Error

occurred

while

retrieving

next

row

of

data

38627

DMB0208E

MMDB_SQLSTATE_COMMIT_FAIL

Error

occurred

while

committing

the

transaction

38628

DMB0208E

MMDB_SQLSTATE_GET_LENGTH_FAIL

Error

occurred

while

retrieving

the

length

of

a

string

value

38629

DMB0208E

MMDB_SQLSTATE_GET_SUBSTRING_FAIL

Error

occurred

while

retrieving

a

portion

of

a

string

value

38650

DMB0077E

DMB0079E

MMDB_SQLSTATE_COPY_BLOB_2_FILE_FAIL

Error

occurred

while

copying

BLOB

to

a

file

38651

DMB0086E

MMDB_SQLSTATE_BLOB_BUFFER_TOO_SMALL

The

buffer

supplied

is

too

small

38652

DMB0082E

MMDB_SQLSTATE_BUILD_HANDLE

Error

occurred

while

constructing

media

column

data

38653

DMB0083E

MMDB_SQLSTATE_INVALID_INSERT_VIA_SELECT

The

request

for

insert

via

select

is

not

valid

38654

DMB0081E

MMDB_SQLSTATE_INVALID_OFFSET_SIZE

The

offset

size

is

not

valid

38655

DMB0068E

MMDB_SQLSTATE_METATABLE_DOESNOT_EXIST

The

required

metadata

table

does

not

exist

38670

DMB0134E

DMB0103E

MMDB_SQLSTATE_UNKNOWN_FORMAT

The

stored

media

has

unknown

format

38671

DMB0135E

MMDB_SQLSTATE_CREATE_THUMBNAIL_FAIL

Error

occurred

while

creating

the

thumbnail

38672

DMB0114E

MMDB_SQLSTATE_FORMAT_CONVERSION_FAIL

Error

occurred

while

converting

the

file

format

38673

DMB0363E

MMDB_SQLSTATE_INVALID_UPDATE

Error

occurred

when

an

update

UDF

was

invoked

without

referencing

a

table

38674

DMB0361E

MMDB_SQLSTATE_NOT_ENABLED

Error

occured

when

an

import

UDF

was

applied

to

a

column

which

was

not

enabled

for

the

extender

38675

DMB0129E

MMDB_SQLSTATE_VIDEO_INTERNAL

Internal

error

in

Video

Extender

UDFs

38676

DMB0129E

MMDB_SQLSTATE_AUDIO_INTERNAL

Internal

error

in

Audio

Extender

UDFs

38677

DMB0129E

MMDB_SQLSTATE_IMAGE_INTERNAL

38678

DMB0089E

DMB0208E

MMDB_SQLSTATE_BASE_INTERNAL_ERROR

Internal

error

in

common

layer

SQLSTATEs

390

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Table

244.

SQLSTATE

codes

and

associated

message

numbers

(continued)

SQLSTATE

Message

No.

Description

38681

DMB0108E

MMDB_SQLSTATE_IMPORT_ENV_NOT_SETUP

Environment

variable

for

import

is

not

set

up

correctly

38682

DMB0111E

MMDB_SQLSTATE_STORE_ENV_NOT_SETUP

Environment

variable

for

store

operation

is

not

set

up

correctly

38683

DMB0107E

MMDB_SQLSTATE_EXPORT_ENV_NOT_SETUP

Environment

variable

for

export

operation

is

not

set

up

correctly

38684

DMB0117E

MMDB_SQLSTATE_TEMP_ENV_NOT_SETUP

Environment

variable

for

creating

temporary

files

is

not

set

up

correctly

38686

DMB0109E

MMDB_SQLSTATE_CANT_RESOLVE_IMPORT_FILE

Error

occurred

while

resolving

import

file

name

38687

DMB0112E

MMDB_SQLSTATE_CANT_RESOLVE_STORE_FILE

Error

occurred

while

resolving

store

file

name

38688

DMB0110E

MMDB_SQLSTATE_CANT_RESOLVE_EXPORT_FILE

Error

occurred

while

resolving

export

file

name

38689

DMB0116E

MMDB_SQLSTATE_CANT_CREATE_TMP_FILE

Error

occurred

while

creating

temporary

file

38690

DMB0076E

MMDB_SQLSTATE_OPEN_IMPORT_FILE_FAIL

Cannot

open

import

file

38691

DMB0115E

MMDB_SQLSTATE_OPEN_STORE_FILE_FAIL

Cannot

open

import

file

38692

DMB0114E

MMDB_SQLSTATE_OPEN_EXPORT_FILE_FAIL

Cannot

open

export

file

38693

DMB0118E

MMDB_SQLSTATE_OPEN_TEMP_FILE_FAIL

Cannot

open

temporary

file

38694

DMB0117E

MMDB_SQLSTATE_OPEN_CONTENT_FILE_FAIL

Cannot

open

content

file

38695

DMB0135E

MMDB_SQLSTATE_OPEN_THUMBNAIL_FILE_FAIL

Cannot

open

thumbnail

file

38696

DMB0135E

MMDB_SQLSTATE_READ_THUMBNAIL_FILE_FAIL

Cannot

read

thumbnail

file

38697

DMB0207E

MMDB_SQLSTATE_OVERWRITE_NOT_ALLOWED

The

overwrite

operation

could

not

be

performed

38699

DMB0171E

MMDB_SQLSTATE_QUERY_NAME_NOT_FOUND

A

query

with

that

name

was

not

found

38700

MMDB_SQLSTATE_NO_MANAGEBLOB

38701

MMDB_SQLSTATE_UDFLOCATOR_FAIL

38702

MMDB_SQLSTATE_SQL_FAIL

38703

MMDB_SQLSTATE_INVALID_UPDATE

38704

MMDB_SQLSTATE_NOT_ENABLED

38705

DMB0366E

DMB0382E

MMDB_SQLSTATE_QBIC_QUERY_FAIL_TO_BUILD

A

failure

occurred

in

building

the

query

SQLSTATEs

Chapter

16.

Diagnostic

information

391

Table

244.

SQLSTATE

codes

and

associated

message

numbers

(continued)

SQLSTATE

Message

No.

Description

38706

DMB0205E

MMDB_SQLSTATE_QBIC_TABLE_COLUMN_PAIR_NOT_VALID

A

failure

occurred

when

trying

to

access

a

QBIC

catalog.

Either

an

image

handle

wasn’t

found

in

the

catalog,

or

the

combination

of

the

table

name

and

column

name

does

not

have

a

catalog.

38707

DMB0383E

MMDB_SQLSTATE_QBIC_QUERY_EXECUTE_FAILED

A

failure

occurred

in

running

the

query

38708

MMDB_SQLSTATE_QBIC_UKNOWN_ERROR

An

unkown

failure

occurred

in

QBIC

38709

DMB0208E

MMDB_COPY_FILE_TO_LOCATOR_FAILURE

A

failure

occurred

in

copying

a

file

to

a

LOB

locator

38710

DMB0534E

MMDB_SQLSTATE_QBIC_UNSUPPORTED_UDF

The

UDF

is

not

supported.

Messages

DMB0001E

The

DB2

Extenders

server

was

not

connected.

Reason:

″<code>″.

Cause:

The

attempted

operation

attempted

requires

the

DB2

Extenders

services

to

be

running.

Action:

On

the

server,

run

the

DMBSTART

command

on

the

command

line

for

the

operating

system.

DMB0003W

The

DB2

Extenders

trace

facility

is

running

for

this

session.

Cause:

The

trace

facility

uses

up

system

resources.

Action:

If

the

performance

of

your

system

is

affected,

you

might

want

to

turn

off

tracing.

DMB0004I

This

program

can

be

run

only

by

the

instance

owner:

″<name>″.

Cause:

The

DB2

extender

servers

must

be

started

from

the

user

ID

under

which

the

instance

was

created.

Action:

Run

the

DMBSTART

command

from

the

user

ID

under

which

the

instance

was

created.

DMB0005E

The

current

database

is

not

enabled

for

the

″<extender-name>″

extender.

Cause:

An

operation

was

attempted

that

requires

the

database

to

be

enabled

for

a

specific

DB2

extender.

For

example,

if

you

want

to

enable

a

table

for

DB2IMAGE

data,

you

must

first

enable

the

database

in

which

the

table

is

stored

for

DB2IMAGE

data.

Action:

Enable

the

database

for

the

extender

data

type

you

want

and

try

again.

DMB0006E

User

″<name>″

is

not

authorized

to

call

this

API.

Cause:

The

call

to

an

application

programming

interface

was

attempted

from

a

user

ID

that

does

not

have

the

level

of

authority

required

for

that

API.

Action:

Either

run

the

application

from

another

user

ID,

or

get

the

database

administrator

to

change

the

level

of

authority

for

the

initial

user

ID.

DMB0007E

User

table

″<table-name>″

is

not

enabled

for

extender

″<extender-name>″.

Cause:

The

table

on

which

the

operation

was

attempted

is

not

enabled

for

that

DB2

extender.

For

example,

a

table

must

be

enabled

to

hold

audio

data

before

a

column

in

the

table

can

be

enabled

for

audio.

Action:

Make

sure

that

the

table

is

enabled

for

the

extender

first.

Then

enable

the

column.

DMB0008E

An

error

occurred

while

running

the

stored

procedure

″<name>″.

Cause:

Either

there

is

an

error

in

the

stored

procedure

that

is

identified

in

the

message,

or

there

is

a

problem

with

the

environment.

Action:

Verify

your

application

and

try

again.

DMB0009E

Memory

allocation

error.

Cause:

The

system

was

unable

to

allocate

memory

that

is

required

to

support

the

attempted

operation.

Action:

Verify

that

your

system

has

enough

memory

to

complete

the

operation.

SQLSTATEs

392

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DMB0010E

The

″<extender-name>″

extender

has

been

previously

defined

for

the

UDT

″<name>″.

Cause:

The

name

of

the

user-defined

type

(UDT)

has

already

been

used

for

a

UDT

that

was

defined

for

another

DB2

extender.

Action:

Choose

another

name

for

your

UDT.

DMB0011E

User

column

″<column-name>″

cannot

be

enabled

for

the

″<extender-name>″

extender.

The

definition

of

the

user

column

is

not

compatible

with

the

distinct

type

″MMDBSYS.<name>″

associated

with

the

extender.

Cause:

The

indicated

column

is

not

defined

for

the

data

type

that

is

shown

in

the

message,

so

it

cannot

be

enabled

for

that

extender.

Action:

Make

sure

that

the

column

you

want

to

enable

has

been

defined

using

the

data

type

that

corresponds

to

the

extender.

DMB0012E

The

specified

user

table

″<table-name>″

does

not

exist.

Cause:

No

table

exists

with

the

specified

name.

Action:

Check

the

name

of

the

table

and

whether

the

table

exists.

DMB0013E

Column

″<column-name>″

is

not

defined

for

table

″<table-name>″.

Cause:

The

attempted

operation

referred

to

a

column

name

that

does

not

exist

in

the

identified

table.

Action:

Check

the

names

of

the

table

and

the

column.

DMB0014W

Column

″<column-name>″

in

user

table

″<table-name>″

is

already

enabled

for

the

″<extender-name>″

extender.

Cause:

An

attempt

was

made

to

enable

the

column

for

an

extender

for

which

the

column

is

already

enabled.

Action:

No

action

is

required.

DMB0015W

The

database

is

already

enabled

for

extender

″<extender-name>″.

Cause:

An

attempt

was

made

to

enable

the

database

for

an

extender

for

which

the

database

is

already

enabled.

Action:

No

action

is

required.

DMB0016W

User

table

″<table-name>″

is

already

enabled

for

the

″<extender-name>″

extender.

Cause:

An

attempt

was

made

to

enable

a

table

for

an

extender

for

which

the

table

is

already

enabled.

Action:

No

action

is

required.

DMB0017E

User

table

″<table-name>″

is

already

enabled

for

the

″<extender-name>″

extender.

But

at

least

one

of

the

associated

metadata

tables

″<table-name>″

or

″<table-name>″

doesn’t

exist.

Cause:

One

or

more

of

the

administrative

support

(metadata)

tables

that

are

associated

with

the

table

has

been

damaged

or

destroyed.

Without

these

metadata

tables,

the

user

table

cannot

be

used

for

data

of

that

extender’s

type.

Action:

Disable

the

user

table

and

re-enable

it

for

the

extender.

DMB0018E

The

system

cannot

create

a

unique

trigger

name

for

column

″<column-name>″

in

table

″<table-name>″.

Cause:

When

the

system

tried

to

enable

the

column

in

the

user

table,

an

error

occurred

during

the

creation

of

triggers

that

are

used

by

the

DB2

Extenders.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

your

database

administrator,

then

contact

IBM

service.

DMB0019I

″<Count>″

files

are

referered

to

in

table

″<table-name>″

for

extender

″<extender-name>″.

Cause:

The

message

displays

the

number

of

external

media

files

that

are

referred

to

by

a

user

table

for

a

specific

extender.

Action:

No

action

is

required.

DMB0020I

″<Count>″

files

are

referenced

in

tables

with

table

schema

″<name>″

for

the

″<extender-name>″

extender.

Cause:

The

message

displays

the

number

of

external

media

files

that

are

referred

to

by

user

tables

with

a

specific

schema

name.

Action:

No

action

is

required.

Messages

Chapter

16.

Diagnostic

information

393

DMB0021I

There

are

″<count>″

inaccessible

files

refererenced

in

table

″<table-name>″

for

the

″<extender-name>″

extender.

Cause:

The

message

displays

the

number

of

external

media

files

that

are

referred

to

by

a

user

table

for

a

specific

extender,

but

are

inaccessible.

The

files

might

have

been

erased.

Action:

No

action

is

required.

DMB0022I

There

are

″<count>″

inaccessible

files

referenced

by

the

″<extender-name>″

extender.

Cause:

The

message

displays

the

number

of

external

media

files

that

are:

v

referred

to

by

user

tables

in

the

current

database.

v

of

a

specific

extender

media

type

(such

as

video).

v

inaccessible;

for

example,

the

files

might

have

been

erased.

Action:

No

action

is

required.

DMB0023I

There

are

″<count>″

inaccessible

files

referenced

in

tables

with

table

schema

″<name>″

for

extender

″<extender-name>″.

Cause:

The

message

displays

the

number

of

external

media

files

that

are

referred

to

by

user

tables

with

a

specific

schema

name,

but

are

inaccessible.

The

files

might

have

been

erased.

The

messages

also

indicates

the

number

of

extenders

the

tables

are

enabled

for.

Action:

No

action

is

required.

DMB0024I

The

current

database

is

enabled

for

″<count>″

extenders.

Cause:

The

message

lists

the

number

of

DB2

Extenders

the

current

database

is

enabled

for.

Action:

No

action

is

required.

DMB0025I

Table

″<table-name>″

is

enabled

for

″<count>″

extenders.

Cause:

The

message

lists

the

number

of

DB2

Extenders

the

indicated

table

is

enabled

for.

Action:

No

action

is

required.

DMB0026I

Column

″<column-name>″

in

table

″<table-name>″

is

enabled

for

″<count>″

extenders.

Cause:

The

message

lists

the

number

of

DB2

Extenders

the

indicated

column

is

enabled

for.

Action:

No

action

is

required.

DMB0027I

The

current

database

is

enabled

for

extender

″<extender-name>″.

Cause:

The

message

indicates

the

DB2

extender

for

which

the

current

database

is

enabled.

Action:

No

action

is

required.

DMB0028I

Table

″<table-name>″

is

enabled

for

extender

″<extender-name>″.

Cause:

The

message

indicates

the

media

data

type

the

user

table

is

enabled

to

hold.

Action:

No

action

is

required.

DMB0029I

Column

″<column-name>″

in

table

″<table-name>″

is

enabled

for

extender

″<extender-name>″.

Cause:

The

message

indicates

the

media

data

type

the

user

column

is

enabled

to

hold.

Action:

No

action

is

required.

DMB0030E

The

current

database

cannot

be

enabled

for

the

″<extender-name>″

extender.

RC

=

″<code>.″

Cause:

Either

the

database

does

not

exist,

or

you

are

not

authorized

to

enable

the

database.

Action:

Make

sure

the

database

exists

and

that

you

are

authorized

to

enable

the

database.

DMB0031E

The

table

cannot

be

enabled

for

the

″<extender-name>″

extender.

RC

=

″<code>.″

Cause:

The

database

does

not

exist,

or

the

table

is

not

enabled,

or

you

are

not

authorized

to

enable

the

table.

Action:

Make

sure

the

database

exists

and

that

both

the

database

and

table

are

enabled

for

the

extender.

Make

sure

that

you

are

authorized

to

enable

the

table.

DMB0032E

The

column

cannot

be

enabled

for

the

″<extender-name>″

extender.

RC

=

″<code>.″

Cause:

The

column

is

was

not

defined

using

the

data

type

for

this

extender,

or

the

column

does

not

exist,

or

the

table

is

not

enabled,

or

you

are

not

authorized

to

enable

the

column.

Action:

Make

sure

the

column

was

defined

using

the

right

data

type.

Make

sure

that

the

table

is

enabled

and

you

are

authorized

to

enable

the

column.

Messages

394

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DMB0033E

You

are

not

authorized

to

run

this

command.

Cause:

Your

user

ID

does

not

have

the

level

of

authority

required

to

run

the

command.

Action:

Either

run

the

command

from

another

user

ID,

or

get

the

database

administrator

to

change

the

level

of

authority

for

your

current

user

ID.

DMB0034I

The

DB2

Extenders

Server

for

database

″<database-name>″

was

started

successfully.

Cause:

The

server

started

successfully

for

the

current

database.

Action:

No

action

is

required.

DMB0035I

The

DB2

Extenders

Server

for

database

″<database-name>″

was

stopped.

Cause:

The

server

stopped

successfully

for

the

current

database.

Action:

No

action

is

required.

DMB0036E

The

DB2

Extenders

server

cannot

be

started

or

stopped.

The

DB2

Extenders

server

daemon

is

probably

not

running.

Contact

your

database

administrator.

Cause:

An

error

occurred

while

starting

or

stopping

the

DB2

Extenders

server.

The

DB2

Extenders

server

daemon

is

probably

not

running.

Action:

Please

contact

your

database

administrator.

DMB0037E

The

USE

session

handle

is

not

valid.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0038E

The

USE

statement

handle

is

not

valid.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0039E

USE

error:

″<error>.″

Cause:

An

internal

error

has

occurred.

Action:

Follow

the

instructions

that

are

contained

in

the

associated

error

message

and

repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0040E

SQL

error:

″<error>″

Cause:

An

internal

error

has

occurred.

Action:

Follow

the

instructions

that

are

contained

in

the

associated

error

message

and

repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0041W

The

current

database

is

re-enabled

for

the

″<extender-name>″

extender

using

the

newly

specified

table

space.

Cause:

When

the

current

database

was

previously

enabled,

it

used

a

different

table

space.

The

database

is

now

enabled

with

a

new

table

space

for

the

administrative

support

tables.

Action:

No

action

is

required.

DMB0042E

Column

″<column-name>″

in

table

″<table-name>″

is

not

enabled

for

the

″<extender-name>″

extender.

Cause:

The

indicated

column

is

not

enabled

for

the

extender

for

which

the

operation

was

attempted.

For

example,

you

might

have

tried

to

disable

a

column

that

was

not

currently

enabled

for

the

indicated

extender.

Action:

Make

sure

that

the

column

is

enabled

for

the

extender

that

is

indicated

in

the

message.

DMB0043I

The

current

database

is

disabled

for

the

″<extender-name>″

extender.

Cause:

The

disable

operation

was

successful.

Action:

No

action

is

required.

DMB0044I

Table

″<table-name>″

is

disabled

for

the

″<extender-name>″

extender.

Cause:

The

disable

operation

was

successful.

Action:

No

action

is

required.

DMB0045I

Column

″<column-name>″

in

table

″<table-name>″

is

disabled

for

the

″<extender-name>″

extender.

Cause:

The

disable

operation

was

successful.

Action:

No

action

is

required.

DMB0046E

The

current

database

cannot

be

disabled

for

the

″<extender-name>″

extender.

RC

=

″<code>.″

Cause:

The

database

does

not

exist

or

is

not

enabled

for

the

extender,

or

you

are

not

authorized

to

disable

the

database.

Action:

Make

sure

that

the

database

exists

and

is

enabled

for

the

extender.

Make

sure

that

you

are

authorized

to

disable

the

database.

Messages

Chapter

16.

Diagnostic

information

395

DMB0047E

The

table

cannot

be

disabled

for

the

″<extender-name>″

extender.

RC

=

″<code>.″

Cause:

The

table

does

not

exist

or

is

not

enabled

for

the

extender,

or

you

are

not

authorized

to

disable

the

table.

Action:

Make

sure

that

the

table

exists

and

is

enabled

for

the

extender.

Make

sure

that

you

are

authorized

to

disable

the

table.

DMB0048E

The

column

cannot

be

disabled

for

the

″<extender-name>″

extender.

RC

=

″<code>″

Cause:

The

column

is

not

enabled

for

the

extender

that

is

indicated

in

the

message,

so

it

cannot

be

disabled

for

that

extender.

Action:

Verify

the

name

of

the

extender

and

whether

the

user

column

is

the

one

you

want

to

disable.

DMB0049E

You

are

not

authorized

to

run

this

command.

Cause:

Your

user

ID

does

not

have

the

level

of

authority

required

to

run

the

command.

Action:

Either

run

the

application

from

another

user

ID,

or

get

the

database

administrator

to

change

the

level

of

authority

for

your

current

user

ID.

DMB0050E

You

do

not

have

″<authority-level>″

authority

on

table

″<table-name>″.

Cause:

The

operation

requires

a

level

of

authority

higher

than

the

one

of

the

user

ID

that

made

the

attempt.

Action:

Either

perform

the

operation

from

the

user

ID

with

the

right

authorization,

or

get

the

database

administrator

to

change

the

level

of

authority

for

your

current

user

ID.

DMB0051E

Bad

media

file

header.

Cause:

The

system

cannot

read

or

open

the

header

of

the

media

file.

Either

the

file

is

damaged,

or

it

is

not

a

media

file.

Action:

Verify

that

the

file

is

a

media

file

and

is

not

damaged.

DMB0052I

The

DB2

Extenders

server

for

database

″<database-name>″

was

started

successfully.

Cause:

The

server

started

successfully.

Action:

No

action

is

required.

DMB0053I

The

DB2

Extenders

server

for

database

″<database-name>″

was

stopped

successfully.

Cause:

The

server

stopped

successfully.

Action:

No

action

is

required.

DMB0054E

The

DB2

Extender

server

cannot

connect

to

the

database

or

allocate

a

DB2

statement

handle.

The

DB2

Extender

server

for

database

″<database-name>″

is

probably

not

running.

Cause:

The

DB2

Extenders

server

cannot

connect

to

the

database

or

allocate

a

DB2

statement

handle.

The

DB2

Extenders

server

for

the

database

is

probably

not

running.

Action:

Make

sure

that

the

DB2

extender

server

for

the

database

is

running.

If

it

is

not,

either

start

the

specific

extender

server

for

the

database,

or

ask

your

system

administrator

to

restart

the

extender

services.

DMB0055I

The

″command-name″

command

completed

successfully.

Cause:

The

command

completed

successfully.

Action:

No

action

is

required.

DMB0056E

An

unexpected

token

″<token>″

was

found

following

″<keyword>″.

Expected

tokens

can

include:

<extendername>.

Cause:

The

command

expected

the

name

of

a

DB2

extender

instead

of

the

token

that

is

indicated

in

the

message.

Action:

Follow

the

syntax

of

the

command

and

try

again.

DMB0057E

The

table

space

″<table-space-name>″

is

not

valid.

Cause:

The

table

space

in

the

message

does

not

exist.

Action:

Verify

the

name

of

the

table

space

and

whether

it

exists.

DMB0058I

″<Count>″

files

are

referenced

by

the

″<extender-name>″

extender.

Cause:

The

message

displays

the

number

of

external

media

files

that

are

referred

to

by

a

specific

extender.

Action:

No

action

is

required.

Messages

396

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DMB0059E

″<Name>″

is

not

a

valid

name

for

an

DB2

extender.

Valid

extender

names

include

″<extender-name,>″

DB2VIDEO,

DB2AUDIO,

and

DB2IMAGE.

Cause:

The

extender

name

is

misspelled.

Action:

Verify

the

extender

name.

DMB0060E

The

correct

syntax

for

″<function>″

is:

″<syntax>.″

Cause:

The

syntax

of

the

command

you

entered

is

wrong.

Action:

Follow

the

syntax

as

described

in

the

message.

DMB0061E

The

table

name

″<name>″

that

follows

″<keyword>″

is

not

valid.

Cause:

The

command

expected

the

name

of

a

table.

Action:

Follow

the

syntax

of

the

command

and

try

again.

DMB0062E

The

column

name

″<name>″

that

follows

″<keyword>″

is

not

valid.

Cause:

The

command

expected

the

name

of

a

column.

Action:

Follow

the

syntax

of

the

command

and

try

again.

DMB0064E

The

system

does

not

recognize

the

token

″<token>″

that

follows

″<keyword>″.

Cause:

The

command

expected

something

other

than

the

token

that

is

indicated

in

the

message.

Action:

Follow

the

syntax

of

the

command

and

try

again.

DMB0065E

The

user

ID

″<identifier>″

that

follows

″<keyword>″

is

not

valid.

Cause:

The

command

expected

a

valid

user

ID.

Action:

Verify

the

user

ID

you

want

and

try

again.

DMB0066E

The

password

″<password>″

that

follows

″<keyword>″

is

not

valid.

Cause:

The

command

expected

a

valid

user

ID

instead

of

the

token

that

is

indicated

in

the

message.

Action:

Verify

the

password

and

try

again.

DMB0067E

The

command

you

entered

is

not

valid.

Cause:

The

name

of

the

command

was

misspelled,

or

the

syntax

was

wrong.

Action:

Follow

the

syntax

of

the

command

and

try

again.

DMB0068E

Metadata

table

does

not

exist.

Cause:

The

function

tried

to

use

an

administrative

support

(metadata)

table

that

should

exist

for

the

data

object.

The

metadata

table

might

have

been

damaged

or

erased.

Action:

Check

the

name

and

verify

the

existence

of

the

metadata

table.

If

the

metadata

tables

were

accidentally

erased

or

damaged,

disable

and

then

reenable

the

data

object.

DMB0069E

DBname

″<name>″

invalid.

Cause:

A

database

with

that

name

does

not

exist.

Action:

Check

the

name

and

verify

the

existence

of

the

database.

DMB0070E

Handle

not

valid.

Cause:

The

handle

value

you

passed

in

your

application

might

be

damaged.

Action:

Verify

your

application

to

make

sure

that

the

extender

handle

values

are

not

changed.

DMB0071E

Can’t

connect

to

″<database-name>″.

Cause:

The

DB2

extender

server

for

the

database

might

not

be

started.

Action:

Check

the

status

of

the

server.

If

the

server

is

not

running,

restart

it

using

the

START

SERVER

command

on

the

DMB

command

line.

DMB0072E

UDF

SQL

server

can’t

disconnect

from

DB.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0073E

USE

session

handle

not

valid.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

Messages

Chapter

16.

Diagnostic

information

397

DMB0074E

USE

statement

handle

not

valid.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0075E

Specify

a

file

name.

Cause:

The

operation

requires

a

media

file

name.

Action:

Enter

the

name

of

a

media

file.

DMB0076E

Can’t

open

import

file.

Cause:

The

import

file

is

either

missing

or

damaged.

Action:

Verify

the

name

and

existence

of

the

import

file.

DMB0077E

Can’t

open/read

content

file.

Cause:

The

extender

handle

points

to

a

file

that

does

not

exist

or

is

corrupted.

The

file

has

become

inaccessible

to

the

extender.

Action:

Use

the

FILENAME

UDF

to

find

the

name

of

the

file,

or

verify

the

existence

of

the

content

file.

DMB0078E

Can’t

create

export

file.

Cause:

The

export

file

is

either

missing

or

corrupted.

Action:

Verify

the

name

and

existence

of

the

export

file.

DMB0079E

Can’t

copy

BLOB

to

file.

Cause:

The

file

cannot

accept

the

BLOB.

There

might

not

be

enough

storage

space

to

accommodate

the

BLOB.

Action:

Compare

the

size

of

the

BLOB

to

the

available

storage,

and

increase

storage

if

necessary.

DMB0080E

Can’t

write

to

file.

Cause:

The

file

is

damaged

or

does

not

exist,

or

the

name

is

misspelled.

Action:

Verify

the

name

and

existence

of

the

file.

DMB0081E

Offset

or

size

invalid.

Cause:

The

operation

did

not

find

the

expected

data

in

the

data

structure.

Either

the

size

of

the

field

or

the

offset

is

incorrect.

Action:

Verify

the

offset

and

the

size

of

the

field.

DMB0082E

Can’t

build

handle.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0083E

″<extender-name>″

and

″<extender-name>″

incompatible.

Cause:

The

two

extenders

specified

in

the

message

are

not

compatible

in

this

usage.

The

insert

operation,

by

either

full

or

subselect,

is

not

valid.

Action:

Make

sure

that

your

target

object

is

enabled

for

the

same

extender

for

which

the

source

object

is

enabled.

DMB0084E

Import

request

invalid:

filename,

content,

storage

type.

Cause:

The

import

operation

failed.

Either

the

file

name,

the

content,

or

the

storage

type

was

not

valid.

Action:

Check

the

data

and

try

again.

DMB0085E

The

update

request

is

not

valid:

filename,

content,

storage

type.

Cause:

The

update

operation

failed.

Either

the

file

name,

the

content,

or

the

storage

type

was

not

valid.

Action:

Check

the

data

and

try

again.

DMB0086E

Requested

size

too

large.

Cause:

The

size

you

requested

is

larger

than

the

maximum

blob

size

for

the

UDF.

Action:

Request

a

smaller

size.

DMB0087E

File

name

invalid.

Cause:

There

is

no

file

with

that

name.

Action:

Verify

the

name

and

existence

of

the

file.

DMB0088E

Handle

value

is

NULL.

Cause:

The

UDF

was

expecting

a

non-null

handle.

Action:

Make

sure

that

the

application

gets

a

valid

handle

and

passes

it

to

the

UDF.

DMB0089E

Handle

value

doesn’t

exist.

Cause:

The

handle

passed

to

the

UDF

is

not

valid.

Action:

Make

sure

the

application

passes

a

valid

handle.

Messages

398

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DMB0090E

Data

truncated.

Cause:

The

file

or

buffer

was

too

small

to

accept

the

data.

Action:

Increase

the

size

of

the

file

or

buffer.

DMB0091W

Content

already

in

file.

Cause:

The

file

already

has

content.

The

content

will

be

overwritten.

Action:

No

action

is

required.

DMB0092E

The

insert

operation

attempted

for

column

″<column-name>″

is

not

valid.

The

column

is

enabled

for

the

″<extender-name>″

extender.

Cause:

The

data

type

of

the

data

that

is

being

inserted

is

different

from

the

extender

for

which

the

column

is

enabled.

Action:

Make

sure

your

target

object

is

enabled

for

the

same

extender

for

which

the

source

object

is

enabled.

DMB0093E

The

update

operation

attempted

for

column

″<column-name>″

is

not

valid.

The

column

is

enabled

for

the

″<extender-name>″

extender.

Cause:

The

data

type

of

the

data

that

is

being

updated

is

different

from

the

extender

for

which

the

column

is

enabled.

Action:

Make

sure

that

your

target

object

is

enabled

for

the

same

extender

for

which

the

source

object

is

enabled.

DMB0094I

Table

″<table-name>″

does

not

exist.

Cause:

The

system

cannot

find

a

table

with

that

name.

It

might

exist

in

another

database.

Action:

No

action

is

required.

DMB0095W

The

table

″<table-name>″

is

not

enabled

for

the

″<extender-name>″

extender.

Cause:

The

table

is

not

enabled

for

the

extender.

Action:

No

action

is

required.

DMB0096W

Column

″<column-name>″

in

table

″<table-name>″

was

not

enabled

for

the

″<extender-name>″

extender.

Cause:

The

system

expected

the

column

to

be

enabled.

Action:

No

action

is

required.

DMB0097W

The

current

database

is

not

enabled

for

the

″<extender-name>″

extender.

Cause:

The

system

expected

the

database

to

be

enabled.

Action:

Enable

the

database

for

the

extender

that

is

indicated

in

the

message.

DMB0098E

The

user

does

not

have

″<authority-level>″

authority

on

table

″<table-name>″.

Cause:

The

operation

requires

a

level

of

authority

higher

than

the

one

of

the

user

ID

that

made

the

attempt.

Action:

Either

perform

the

operation

from

the

user

ID

that

owns

the

table,

or

ask

the

database

administrator

to

change

the

level

of

authority

for

your

current

user

ID.

DMB0099E

Can’t

commit

transaction.

Cause:

The

extender

server

for

the

current

database

might

be

stopped.

Action:

Check

the

status

of

the

server.

If

the

server

is

not

running,

restart

it

using

the

START

SERVER

command

on

the

db2ext

command

line.

DMB0100E

″<name>″

is

not

a

valid

table

name.

Cause:

No

table

with

that

name

exists.

Action:

Verify

the

name

and

existence

of

the

table

and

try

again.

DMB0101E

Invalid

NULL

parameter.

Cause:

The

command

was

expecting

a

non-null

parameter.

Action:

Check

the

syntax

and

try

again.

DMB0102E

Invalid

storage

type.

Cause:

For

the

DB2

Extenders,

the

storage

type

indicates

where

the

media

data

is

stored.

Action:

Specify

0

to

indicate

external

(in

a

file)

and

1

to

indicate

external

(in

the

database).

DMB0103E

Unsupported

format.

Cause:

DB2

Extenders

do

not

support

the

format

of

this

object.

Action:

Convert

the

object

to

a

supported

format.

Messages

Chapter

16.

Diagnostic

information

399

DMB0104E

Video

content

buffer

too

small.

Cause:

The

video

clip

is

too

big

for

the

buffer

that

is

allocated

for

it.

Action:

Allocate

a

bigger

buffer.

DMB0105E

MPEG1

header

invalid.

Cause:

The

header

of

the

MPEG1

file

is

missing

or

corrupt.

Action:

Verify

that

the

file

is

a

MPEG1

file.

DMB0106E

AVI

header

invalid.

Cause:

The

header

of

the

AVI

file

is

missing

or

corrupt.

Action:

Verify

that

the

file

is

an

AVI

file.

DMB0107E

Export

environment

not

set

up.

Cause:

In

the

DB2

Extenders,

the

environment

variables

for

the

export

environment

are

not

set

properly.

Action:

Make

sure

that

the

environment

variables

are

set

properly,

as

described

in

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

DMB0108E

Import

environment

not

set

up.

Cause:

In

the

DB2

Extenders,

the

environment

variables

for

the

import

environment

are

not

set

properly.

Action:

Make

sure

that

the

environment

variables

are

set

properly,

as

described

in

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

DMB0109E

Can’t

resolve

import

file.

Cause:

There

is

no

import

file

with

that

name.

Action:

Verify

the

name

and

existence

of

the

file

and

make

sure

that

the

environment

variables

are

set

properly,

as

described

in

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

DMB0110E

Can’t

resolve

export

file.

Cause:

There

is

no

export

file

with

that

name.

Action:

Verify

the

name

and

existence

of

the

file

and

make

sure

that

the

environment

variables

are

set

properly,

as

described

in

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

DMB0111E

Store

environment

not

set

up.

Cause:

The

environment

variables

for

the

store

environment

are

not

set

properly,

Action:

Make

sure

the

environment

variables

are

set

properly,

as

described

in

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

DMB0112E

Can’t

resolve

store

file.

Cause:

There

is

no

store

file

with

that

name.

Action:

Verify

the

name

and

existence

of

the

file

and

make

sure

that

the

environment

variables

are

set

properly,

as

described

in

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

DMB0113E

Can’t

open

import

file.

Cause:

The

file

might

be

locked

by

someone

else,

or

the

file

is

missing

or

corrupt.

Action:

Verify

the

name,

existence,

and

status

of

the

file,

and

your

authorization

level.

DMB0114E

Can’t

open

export

file.

Cause:

The

file

might

be

locked

by

someone

else,

or

the

file

is

missing

or

corrupt.

Action:

Verify

the

name,

existence,

and

status

of

the

file,

and

your

authorization

level.

DMB0115E

Can’t

open

store

file.

Cause:

The

system

is

trying

to

write

a

file,

but

the

file

already

exists.

The

server

does

not

have

the

authority

to

overwrite

the

file.

Action:

Verify

the

name,

existence,

and

status

of

the

file,

and

your

authorization

level.

DMB0116E

Can’t

create

temporary

file.

Cause:

There

might

not

be

enough

storage

space

to

create

the

temporary

file.

Action:

Make

sure

that

the

temporary

environment

variables

for

the

extender

are

set

properly.

Increase

the

storage

if

necessary.

DMB0117E

Temporary

environment

not

set

up.

Cause:

The

environment

variables

for

the

temporary

environment

are

not

set

properly,

Action:

Make

sure

that

the

environment

variables

are

set

properly,

as

described

in

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

Messages

400

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DMB0118E

Can’t

open

temporary

file.

Cause:

The

temporary

file

might

have

been

overwritten

or

damaged.

Action:

Make

sure

that

the

environment

variables

are

set

properly,

as

described

in

Appendix

A,

“Setting

environment

variables

for

DB2

Extenders,”

on

page

413.

DMB0119I

The

dmbsrv

server

is

starting

for

″<name>″

with

″<count>″

connections.

Cause:

The

message

indicates

how

many

connections

are

made

when

the

server

starts.

Action:

No

action

is

required.

DMB0120E

The

dmbsrv

server

failed

to

start

for

″<name>″

with

″<count>″

connections.

Cause:

DB2

might

not

be

started

yet,

or

the

database

might

not

exist,

or

your

system

might

have

run

out

of

licensed

connections.

Action:

Make

sure

that

DB2

is

started

and

the

database

exists.

If

the

problem

persists,

contact

IBM

to

get

more

licences.

DMB0121I

The

dmbsrv

server

is

started

for

″<name>″

with

″<count>″

connections.

Cause:

The

message

indicates

how

many

connections

are

made

when

the

server

starts.

Action:

No

action

is

required.

DMB0122I

The

dmbssd

server

is

ready.

Cause:

The

server

is

ready

to

run

your

application.

Action:

No

action

is

required.

DMB0129E

Invalid

operation:

″<operation-name>″.

Cause:

No

command

or

API

exists

with

that

name.

Action:

Verify

the

command

or

API

and

try

again.

DMB0130E

Column

″<column-name>″

failed

to

be

bound

to

the

SQL

statement.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0131E

SQL

prepare

statement

failed.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0132E

SQL

set

parameter

failed.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0133E

SQL

execute

statement

failed.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0134E

File

format

conversion

failed.

Cause:

The

format

of

the

stored

multimedia

data

is

not

support

for

format

conversion.

Action:

You

cannot

convert

the

format

of

this

file.

DMB0135E

Can’t

open/read

thumbnail.

Cause:

The

thumbnail

file

might

be

missing

or

damaged.

Action:

Verify

the

name,

existence,

and

integrity

of

the

thumbnail

file.

DMB0136E

Can’t

find

bind

file.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0137E

Can’t

connect

to

DB

″<database-name>″

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0138E

Can’t

free

an

SQL

statement.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0139E

The

feature

name

″<name>″

that

follows

″<keyword>″

is

not

valid.

Cause:

The

Image

Extender

expected

a

valid

feature

name

in

this

command.

Action:

Try

the

command

again

with

a

valid

feature

name.

Valid

feature

names

include:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Messages

Chapter

16.

Diagnostic

information

401

DMB0141E

The

qualifier

″<identifier>″

that

follows

″<keyword>″

is

not

valid.

Cause:

The

system

cannot

identify

the

qualifier

in

the

command.

Action:

Check

the

qualifier

and

try

again.

DMB0142E

No

catalog

was

opened.

Cause:

In

the

DB2

Extenders,

the

current

command

needs

a

QBIC

catalog

to

be

opened.

Action:

Open

the

QBIC

catalog

with

the

OPEN

QBIC

CATALOG

command.

DMB0143I

In

the

QBIC

catalog

for

column

″<column-name>″

in

table

″<table-name>″,

auto-cataloging

has

been

set

to

″<status>″.

There

are

″<count>″

features:

Cause:

The

message

indicates

the

number

of

features

defined

in

the

QBIC

catalog

for

a

specific

image

column,

and

whether

auto-cataloging

is

turned

on.

Action:

No

action

is

required.

DMB0145E

The

query

handle

is

not

valid.

Cause:

The

query

handle

you

used

in

the

API

call

is

not

valid.

Action:

Check

your

application

to

see

if

you

are

obtaining

the

correct

query

handle.

DMB0146E

The

feature

class

name

″<feature-class>″

is

not

valid.

Cause:

There

is

no

feature

class

with

that

name.

Valid

feature

names

include:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Action:

Correct

the

name

of

the

feature

and

try

again.

DMB0147E

The

feature

class

name

″<feature-class>″

is

either

missing

or

not

valid.

Cause:

Valid

feature

names

include:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Action:

Correct

the

name

of

the

feature

and

try

again.

DMB0148E

Feature

″<feature-name>″

is

already

a

member

of

the

query.

Cause:

The

query

already

supports

the

feature

indicated

in

the

message.

Action:

No

action

is

required.

DMB0149E

Feature

″<feature-name>″

is

not

a

member

of

the

query.

Cause:

The

query

does

not

include

the

specified

feature

name.

Action:

To

add

the

feature

to

the

query

before

calling

other

APIs

that

access

the

feature,

use

the

QbQueryAddFeature

API.

DMB0150E

The

system

cannot

allocate

memory.

Cause:

The

system

was

unable

to

allocate

memory

required

to

support

the

attempted

operation.

Action:

Verify

that

your

system

has

enough

memory

to

complete

the

operation.

DMB0151E

The

pointer

to

the

return

value

is

NULL.

Cause:

The

API

call

did

not

complete

successfully

because

the

pointer

to

a

return

value

must

not

be

NULL.

Action:

Make

sure

that

valid

parameters

are

supplied

to

the

API

call

and

the

syntax

is

followed

correctly.

DMB0152E

The

pointer

to

the

list

return

value

is

NULL.

Cause:

The

API

call

did

not

complete

successfully

because

the

pointer

to

a

return

value

must

not

be

NULL.

Action:

Make

sure

that

valid

parameters

are

supplied

to

the

API

call

and

the

syntax

is

followed

correctly.

DMB0153E

The

scope

parameter

is

reserved

and

must

be

0.

Cause:

The

parameter

is

reserved

for

future

use.

Action:

Set

the

scope

to

0.

DMB0154E

The

pointer

to

the

feature

class

name

is

not

valid.

Cause:

The

API

call

expected

a

valid

pointer

to

the

input

feature

class

name.

Action:

Make

sure

that

valid

parameters

are

supplied

to

the

API

call

and

the

syntax

is

followed

correctly.

Messages

402

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DMB0155I

A

buffer

size

of

zero

was

passed

to

the

″<function-name>″

function.

Cause:

The

API

call

needs

the

buffer

to

return

information.

Action:

No

action

is

required.

DMB0156E

The

QbImageSource

pointer

is

NULL.

Cause:

A

NULL

value

indicates

that

the

structure

should

not

be

changed.

Action:

No

action

is

required.

DMB0157E

The

QbImageSource

type

″<type>″

is

not

valid.

Cause:

The

data

structure

referred

to

by

this

DB2

extender

API

is

of

the

wrong

data

type.

Action:

The

data

type

of

the

structure

should

be

QbImageSource.

DMB0159E

The

pointer

to

the

QbImageSource

image

buffer

is

NULL.

Cause:

The

API

call

expected

a

pointer

to

be

returned.

Action:

Check

your

application

to

see

if

the

API

call

and

the

buffer

is

specified

correctly.

DMB0160I

The

length

of

the

image

buffer

or

file

is

zero.

Cause:

The

length

is

zero.

Action:

No

action

is

required.

DMB0161E

The

pointer

to

the

table

and/or

column

name

is

NULL.

Cause:

The

API

call

expected

a

pointer

to

be

supplied.

Action:

Check

your

application

to

see

if

the

input

to

the

API

call

is

specified

correctly.

DMB0162I

You

set

requestedHits

to

zero.

Cause:

With

requestedHits

set

to

zero,

you

get

nothing

back.

Action:

No

action

is

required.

DMB0163I

That

function

is

not

yet

supported.

Cause:

That

function

is

not

yet

supported.

Action:

No

action

is

required.

DMB0164E

The

system

cannot

process

the

query

(<query-name>).

Cause:

An

error

occurred

when

the

query

was

created.

Action:

Check

the

input

to

the

command

or

API

and

try

again.

DMB0165E

The

system

cannot

run

the

query

(<query-name>).

Cause:

An

error

occurred

when

the

query

was

created.

Action:

Check

the

input

to

the

command

or

API

and

try

again.

DMB0166E

A

statement

error

was

found

in

″<name>″

while

executing

″<name>″:

″<error>″

Cause:

An

internal

IBM

error

occurred.

Action:

Please

contact

your

database

administrator.

DMB0167E

An

error

occurred

while

reading

QbGenericImageDataClass

(<error>).

Cause:

An

internal

IBM

error

occurred.

Action:

Please

contact

your

database

administrator.

DMB0168E

A

query’s

feature

″<feature-name>″

was

not

set

prior

to

search.

Cause:

The

query

did

not

run

because

it

had

no

feature

assigned

to

it.

Action:

Add

a

feature

to

the

query

using

either

the

QbAddFeature

API

or

the

ADD

QBIC

FEATURE

command.

DMB0169E

The

following

error

occurred

in

the

Call-Level

Interface:

″<error>″.

Cause:

CLI

error.

Action:

Follow

the

directions

in

the

message

text.

DMB0170E

Query

name

″<query-name>″

is

already

in

use.

Cause:

Another

query

exists

with

that

name.

Action:

Select

another

name.

DMB0171E

Query

name

″<query-name>″

has

not

been

stored.

Cause:

After

creating

the

query,

the

system

could

not

store

it.

Action:

Make

sure

that

you

have

write

authority

and

Messages

Chapter

16.

Diagnostic

information

403

enough

storage

to

store

the

query.

DMB0172E

SQL

Error:

″<error>″.

Cause:

An

internal

error

has

occurred.

Action:

Follow

the

instructions

that

are

contained

in

the

associated

error

message

and

repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0173E

The

catalog

is

open,

but

for

read-only:

″<catalog-name>″.

Cause:

You

cannot

update

the

catalog

because

someone

else

already

opened

the

catalog

in

write

mode,

or

you

do

not

have

write

authority

for

it.

Action:

Wait

until

the

other

user

is

finished,

run

the

application

from

another

user

ID,

or

get

the

database

administrator

to

change

the

level

of

authority

for

your

current

user

ID.

DMB0174E

A

system

error

occurred:

″<error>″.

Cause:

An

internal

IBM

error

occurred.

Action:

Follow

the

instructions

that

are

contained

in

the

associated

error

message

and

repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0175I

Images

were

not

found:

″<information>″.

Cause:

No

images

were

found

that

matched

the

query.

The

database

might

be

empty.

Action:

No

action

is

required.

DMB0176I

The

column

already

has

a

QBIC

catalog:

″<table-name

column-name>″.

Cause:

Another

catalog

exists

with

that

name.

Action:

No

action

is

required.

DMB0177E

The

system

cannot

open

the

catalog;

the

error

message

is:

″<error>″.

Cause:

The

catalog

was

damaged.

Action:

Follow

the

instructions

in

the

message

text.

DMB0178E

The

system

cannot

delete

the

catalog;

the

error

message

is:

″<error>″.

Cause:

Either

the

catalog

does

not

exist,

or

it

was

damaged.

Action:

Verify

the

name

and

existence

of

the

catalog

and

try

again.

DMB0179E

The

catalog

handle

is

not

valid:

″<error>″.

Cause:

The

catalog

handle

you

used

in

the

API

call

is

not

valid.

Action:

Check

your

application

to

see

if

you

are

obtaining

the

correct

catalog

handle.

DMB0180I

Access

to

catalog

is

denied:

″<error>″.

Cause:

Access

is

denied.

Action:

No

action

is

required.

DMB0181I

Catalog

is

in

use

″<error>″.

Cause:

Another

operation

is

using

this

catalog.

Action:

No

action

is

required.

DMB0184I

Tracing

has

already

been

started:

Cause:

Tracing

has

already

been

started.

Action:

No

action

is

required.

DMB0185I

Tracing

has

not

been

started

yet.

Cause:

Tracing

has

not

been

started

yet.

Action:

No

action

is

required.

DMB0186I

Tracing

was

turned

on

at

″<time>″

from

directory

″<directory-name>″.

The

trace

file

is

″<file-name>″.

″<Count>

bytes

of

trace

data

have

been

written.

Cause:

Tracing

is

on.

Action:

No

action

is

required.

DMB0187E

Communication

cannot

be

established

because

the

system

cannot

open

file

″<file-name>″

for

writing.

Cause:

Either

you

are

not

the

owner

of

the

current

instance

that

is

described

by

environment

variable

DB2INSTANCE,

or

the

environment

variables

such

as

DB2MMTOP

are

not

set

correctly.

Action:

Log

with

the

user

ID

that

owns

the

instance.

Verify

that

the

environment

variables

are

set

correctly.

DMB0188I

An

error

occurred

when

creating

the

trace

daemon:

″<error>″

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

Messages

404

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DMB0189I

Tracing

has

already

been

successfully

started:

Cause:

Tracing

has

already

been

started.

Action:

No

action

is

required.

DMB0190E

Tracing

cannot

be

started.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0191E

Environment

variable

″<name>″

needs

to

be

set.

Cause:

The

system

configuration

is

not

correct.

Action:

Set

the

variable

and

try

again.

DMB0192I

Tracing

has

been

successfully

turned

off.

Cause:

Tracing

is

off.

Action:

No

action

is

required.

DMB0193E

The

system

cannot

write

to

file

″<file-name>″.

Cause:

You

do

you

have

write

authority

for

the

directory

of

the

specified

file.

Action:

Please

contact

your

database

administrator

to

get

authority.

DMB0194E

The

system

cannot

read

from

file

″<file-name>″.

Cause:

Either

the

file

does

not

exist

or

you

do

not

have

read

authority

for

the

file.

Action:

Make

sure

the

file

exists

and

that

you

have

read

authority

for

the

file.

DMB0198E

The

trace

code

″<code>″

in

the

input

file

is

unknown.

The

input

file

might

be

damaged.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0199E

You

do

not

have

″<authority-level>″

authority

for

any

of

the

referenced

tables.

Cause:

Your

user

ID

does

not

have

the

level

of

authority

required

for

the

operation.

Action:

Either

perform

the

operation

from

another

user

ID,

or

get

the

database

administrator

to

change

the

level

of

authority

for

your

current

user

ID.

DMB0200W

You

do

not

have

″<authority-level>″

authority

for

at

least

one

of

the

referenced

tables.

Cause:

Your

user

ID

does

not

have

the

level

of

authority

required

for

some

tables.

If

you

are

listing

referrred

to

files,

the

files

that

are

listed

are

referred

to

by

tables

for

which

you

have

Select

authority.

If

there

are

tables

on

your

system

for

which

you

do

not

have

Select

authority,

the

files

referred

to

by

them

are

not

listed.

If

you

are

reorganizing

metadata,

the

system

only

reorganized

metadata

for

tables

for

which

you

have

Control

authority.

Action:

To

get

all

the

files,

either

perform

the

operation

from

another

user

ID,

or

get

the

database

administrator

to

change

the

level

of

authority

for

your

current

user

ID.

DMB0201I

A

feature

with

that

name

already

exists:

″<feature-name>″.

Cause:

A

feature

with

that

name

is

already

included

in

the

QBIC

catalog.

Action:

No

action

is

required.

DMB0202E

The

feature

name

is

not

valid:

″<feature-name>″.

Cause:

There

is

no

feature

class

with

that

name.

Valid

feature

names

include:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Action:

Correct

the

name

of

the

feature

and

try

again.

DMB0203E

The

feature

was

not

found:

″<feature-name>″.

Cause:

There

is

no

feature

class

with

that

name,

or

the

feature

class

is

not

included

in

the

QBIC

catalog.

Valid

feature

names

include:

v

QbColorFeatureClass

v

QbColorHistogramFeatureClass

v

QbDrawFeatureClass

v

QbTextureFeatureClass

Action:

Correct

the

name

of

the

feature

and

try

again.

Messages

Chapter

16.

Diagnostic

information

405

DMB0204E

The

column

is

not

enabled

for

DB2IMAGE:

″<column-name>″.

Cause:

The

column

is

not

enabled

for

the

Image

Extender.

Action:

Make

sure

that

the

column

is

enabled

for

the

DB2

Image

Extender.

DMB0205E

No

catalog

found

for

″<table-name

column-name>″.

Cause:

There

is

no

QBIC

catalog

associated

with

the

specified

column.

Action:

Create

a

QBIC

catalog

for

the

column

before

performing

any

other

QBIC

operations.

DMB0206W

The

specified

column

is

not

enabled

for

any

extender.

Cause:

The

column

might

not

exist

or

its

data

type

might

not

be

compatible

with

the

extenders.

Action:

Verify

that

the

column

has

been

defined

using

the

correct

data

type.

DMB0207E

Can

not

overwrite

the

file.

Cause:

The

file

already

exists,

but

the

EXPORT

UDF

cannot

overwrite

it.

Action:

Export

the

file

to

a

different

file

name

or

allow

the

EXPORT

UDF

to

overwrite

the

file.

DMB0208E

sqlcode=<code>

clistate=<code>.

Cause:

An

internal

error

has

occurred.

Action:

Repeat

the

operation.

If

the

error

occurs

again,

contact

IBM

service.

DMB0209E

Invalid

audio

header.

Cause:

The

header

of

the

audio

file

is

missing

or

corrupt.

Action:

Verify

that

the

format

of

the

audio

file

is

supported

by

DB2

Extenders.

DMB0211W

File

exists

w/o

overwrite.

Cause:

The

specified

target

file

already

exists

and

is

not

overwritten.

Action:

No

action

is

required.

DMB0212E

The

resultType

parameter

is

reserved

and

must

be

0.

Cause:

The

parameter

is

reserved

for

future

use.

Action:

Set

the

resultType

to

0.

DMB0214E

The

pointer

to

the

query

name

is

not

valid.

Cause:

The

API

call

expected

a

valid

pointer

to

the

input

query

name.

Action:

Make

sure

that

valid

parameters

are

supplied

to

the

API

call

and

the

syntax

is

followed

correctly.

DMB0352E

Command

line

environment

not

initialized.

Cause:

The

command

line

environment

is

not

initialized

to

run

the

db2ext

command-line

processor.

(This

message

applies

only

to

Windows

NT,

Windows

2000

and

Windows

XP

environments.)

Action:

Issue

the

db2cmd

command

to

open

a

DB2CLP

window,

then

issue

the

db2ext

command

to

run

the

db2

command-line

processor

in

that

window.

DMB0353E

Cannot

communicate

with

db2ext

command-line

processor’s

background

process.

Cause:

The

background

process

for

the

db2ext

command-line

processor

is

running,

but

the

db2ext

command-line

processor

cannot

communicate

with

it.

Action:

Try

issuing

the

db2ext

command

in

a

different

window.

DMB0354E

Cannot

start

db2ext

command-line

processor’s

background

process.

Cause:

The

background

process

for

the

db2ext

command-line

processor

is

running,

but

the

db2ext

command-line

processor

cannot

communicate

with

it.

Action:

Check

that

the

executable

module

for

the

background

process

(db2extb

or

db2extb.exe)

exists,

and

its

directory

is

in

the

PATH

environment

variable.

DMB0355E

db2ext

command-line

processor’s

background

process

timed

out.

Cause:

The

background

process

for

the

db2ext

command-line

processor

started

successfully,

but

the

db2ext

command-line

processor

cannot

communicate

with

it

within

the

allowed

time

limit.

Action:

Try

issuing

the

db2ext

command

in

a

different

window.

DMB0356E

Cannot

communicate

with

the

db2ext

command-line

processor’s

background

process.

Cause:

The

db2ext

command-line

processor

sent

a

request

to

its

background

process,

but

the

request

was

not

received.

Action:

Make

sure

that

the

background

process

for

Messages

406

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

the

db2ext

command-line

processor

is

still

running.

DMB0357E

db2ext

command-line

processor’s

background

process

is

not

responding.

Cause:

The

db2ext

command-line

processor

sent

a

request

to

its

background

process,

but

the

background

process

did

not

respond

within

the

allowed

time

limit.

Action:

Make

sure

that

the

background

process

for

the

db2ext

command-line

processor

is

still

running.

DMB0359E

The

db2ext

command-line-processor

background

process

request

queue

or

input

queue

was

not

created

within

the

timeout

period.

Cause:

The

background

process

for

the

db2ext

command-line

processor

did

not

create

message

queues

within

the

allowed

time

limit.

(This

message

applies

only

to

UNIX

environments.)

Action:

Make

sure

that

the

disk

on

which

the

DB2

instance

home

directory

resides

is

not

full

(the

background

process

needs

this

home

directory

to

create

a

file

for

message

queues).

If

the

disk

is

not

full,

check

whether

you

have

started

too

many

db2extb

processes.

This

is

possible

if

you

are

running

the

db2ext

command-line

processor

in

many

windows.

A

background

process

is

started

in

a

window

the

first

time

you

issue

a

db2ext

command-line

processor

request

in

command

mode.

Make

sure

that

you

issue

the

command

db2ext

terminate

to

end

the

db2ext

command-line

processor

when

you

no

longer

need

it.

Message

queues

for

the

backend

process

are

deleted

only

if

you

issue

the

terminate

command.

DMB0361E

Column

or

table

not

enabled.

Cause:

An

import

UDF

was

specified,

but

the

specified

table

column

is

not

enabled

for

the

extender.

Action:

Enable

the

table

column

and

retry.

DMB0363E

Missing

table

and

column

name.

Cause:

An

update

UDF

was

invoked,

but

a

table

was

not

specified.

Action:

Specify

a

table

and

retry.

DMB0364E

Extender

"<extender-name>"

has

been

previously

defined

for

the

table

space

"<tablespace-name>".

Cause:

The

specified

database,

table,

or

column

has

already

been

enabled

for

the

extender

using

a

different

tablespace

than

the

one

specified.

Action:

Check

that

the

table

space

specification

is

correct.

DMB0365E

You

don’t

have

CONTROL

privilege

on

"<metadata-table-name>"

and

"<metadata-table-name

>"

which

are

the

metadata

tables

for

"<schema-name>"."<table-name>".

Cause:

Your

request

was

denied

because

you

do

not

have

the

required

CONTROL

privilege

on

the

metadata

tables

for

the

specified

user

table.

Action:

Have

your

database

administrator

grant

you

CONTROL

privilege

on

the

metadata

tables.

DMB0366E

Expected

feature

name.

Cause:

A

feature

name

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0367E

Expected

color|color

histogram|file.

Cause:

Either

“color”,

“histogram”,

or

“file”

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0368E

Expected

','.

Cause:

A

','

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0369E

File

is

not

valid.

Cause:

The

file

specified

in

the

query

string

is

not

valid.

Action:

Correct

the

query

string

and

try

again.

DMB0370E

Expected

filename.

Cause:

A

filename

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0371E

Expected

server|client.

Cause:

Either

“server”

or

“client”

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0372E

Expected

'('.

Cause:

A

'('

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0373E

Expected

')'.

Cause:

A

')'

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

Messages

Chapter

16.

Diagnostic

information

407

DMB0374E

Expected

percentage.

Cause:

The

percent

value

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0375E

Expected

color.

Cause:

The

red,

green,

and

blue

values

are

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0376E

Expected

'='.

Cause:

An

'='

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0377E

Expected

'<'.

Cause:

An

'<'

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0378E

Expected

'>'.

Cause:

An

'>'

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0379E

Expected

'and'.

Cause:

An

'and'

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0380E

Expected

weight.

Cause:

A

weight

is

expected

in

the

query

string.

Action:

Correct

the

query

string

and

try

again.

DMB0381E

Feature

not

set.

Cause:

The

feature

has

not

been

added

to

the

QBIC

catalog.

Action:

Add

the

feature

to

the

QBIC

catalog,

and

recatalog

the

images.

DMB0382E

Could

not

build

query.

Cause:

The

extender

server

for

the

current

database

might

be

stopped.

Action:

Check

the

status

of

the

server.

If

the

server

is

not

running,

restart

it

using

the

START

SERVER

command

on

the

db2ext

command

line.

DMB0383E

Could

not

execute

query.

Cause:

The

extender

server

for

the

current

database

might

be

stopped.

Action:

Check

the

status

of

the

server.

If

the

server

is

not

running,

restart

it

using

the

START

SERVER

command

on

the

db2ext

command

line.

DMB0384E

Could

not

get

next

item.

Cause:

End

of

the

list

has

been

reached.

Action:

Make

sure

that

your

application

is

not

attempting

to

retrieve

an

item

beyond

the

end

of

the

list.

DMB0390E

The

command

″<command-name>″

or

API

″<api-name>″

is

valid

only

if

the

application

is

connected

to

a

DB2

″<server-type>″

server.

Cause:

The

application

is

connected

to

a

type

of

DB2

server

that

the

API

or

command

does

not

support.

Action:

Use

the

proper

API

or

command

for

the

type

of

DB2

server

to

which

the

application

is

connected.

DMB0391I

This

command

can

be

run

only

when

a

DB2

UDB

client

is

accessing

a

DB2

UDB

server.

Cause:

Either

the

db2ext

command-line

processor

is

not

connected

to

a

DB2

UDB

server,

or

the

db2ext

command-line

processor

has

not

been

started

by

a

DB2

UDB

client.

For

example,

the

command

START

SERVER

is

valid

only

if

the

db2ext

command-line

processor

is

connected

to

a

DB2

non-Extended

Enterprise

Edition

server.

Action:

Do

not

issue

this

command

in

the

current

client/server

configuration.

DMB0392I

The

command

can

be

run

only

when

a

DB2

UDB

client

is

accessing

a

DB2

UDB

Extended

Enterprise

Edition

server.

For

example,

the

command

DISCONNECT

SERVER

is

valid

only

if

the

db2ext

command-line

processor

is

connected

to

a

DB2

Extended

Enterprise

Edition

server.

Cause:

Either

the

db2ext

command-line

processor

is

not

connected

to

a

DB2

UDB

Extended

Enterprise

Edition

server,

or

the

db2ext

command-line

processor

has

not

been

started

from

a

DB2

UDB

client.

Action:

Do

not

issue

this

command

in

the

current

client/server

configuration.

Messages

408

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

DMB0395E

This

command

cannot

be

run

from

a

DB2

for

z/OS

client.

Cause:

DB2

extender

client

code

supports

administrative

APIs

and

commands

for

a

DB2

for

z/OS

server,

but

not

vice

versa.

DB2

extender

commands

that

run

in

a

DB2

UDB

server

(either

Extended

Enterprise

Edition

or

non-Extended

Enterprise

Edition)

are

not

supported

by

DB2

for

z/OS.

Action:

Do

not

issue

this

command

in

the

current

client/server

configuration.

DMB0396I

The

current

server

is

disabled

for

the

″<extender-name>″

extender.

Cause:

The

disable

operation

was

successful.

Action:

No

action

is

required.

DMB0397E

The

current

server

cannot

be

disabled

for

the

″<extender_name>″

extender.

RC

=

<code>

Cause:

The

database

server

does

not

exist

or

is

not

enabled

for

the

extender,

or

you

are

not

authorized

to

disable

the

database

server.

Action:

Make

sure

that

the

database

server

exists

and

is

enabled

for

the

extender.

Make

sure

that

you

are

authorized

to

disable

the

database

server.

DMB0398I

The

current

server

is

enabled

for

″<count>″

extenders.

Cause:

The

message

lists

the

number

of

DB2

Extenders

the

current

database

server

is

enabled

for.

Action:

No

action

is

required.

DMB0399E

The

current

server

cannot

be

enabled

for

the

″<extender-name>″

extender.

RC

=

<code>

Cause:

Either

the

database

server

does

not

exist,

or

you

are

not

authorized

to

enable

the

database

server.

Action:

Make

sure

the

database

server

exists

and

that

you

are

authorized

to

enable

the

database

server.

DMB0403E

This

command

cannot

be

run

with

a

DB2

z/OS

Server.

Cause:

This

command

is

acceptable

if

the

db2ext

command-lien

processor

is

connected

to

a

DB2

UDB

server,

but

it

cannot

be

run

with

a

DB2

for

z/OS

server.

Action:

Do

not

use

this

CLP

command

under

the

current

client/server

configuration.

DMB0405E

The

specified

tablespace

is

not

defined

on

the

″MMDBSYS″

database.

Cause:

The

tablespace

passed

as

input

to

the

API

or

command

is

not

defined

on

the

″MMDBSYS″

database.

Action:

Use

tablespaces

defined

on

the

″MMDBSYS″

database

as

input

to

the

DBxEnableServer()

API

and

the

ENABLE

SERVER

command.

DMB0406E

The

required

tablespace

specification

is

missing.

Cause:

The

required

tablespace

specification

was

not

given

with

the

API

or

command.

Action:

Specify

tablespaces

that

are

defined

on

the

″MMDBSYS″

database

as

input

when

calling

this

API

or

command.

DMB0459E

-a

option

is

only

applicable

if

you

are

a

DB2

z/OS

client.

Cause:

The

-a

option

is

used

to

specify

an

z/OS

subsystem,

however

it

was

issued

from

a

DB2

UDB

client.

Action:

Do

not

specify

the

-a

option

from

a

DB2

UDB

client.

DMB0463E

The

command

″<command-name>″

failed.

The

file

″<file-name>″

in

the

redist

directory

on

the

instance

owning

machine

contains

more

information.

Cause:

The

specified

command

was

not

successfully

run.

See

the

file

for

more

information.

Action:

Make

the

necessary

corrections

and

try

again.

DMB0464E

UDF

error

on

node

″<node-number>″.

Cause:

The

UDF

was

not

successfully

run

on

the

specified

node.

Action:

Make

the

necessary

corrections

and

try

again.

DMB0465E

Error

on

node

″<node-number>″.

Cause:

An

error

occurred

on

the

specified

node

number.

Action:

Make

the

necessary

corrections

and

try

again.

DMB0466E

One

or

more

nodes

are

not

responding.

Cause:

One

or

more

nodes

are

currently

not

responding.

Action:

Try

again

later.

Messages

Chapter

16.

Diagnostic

information

409

DMB0467E

″<variable-name>″

is

not

a

valid

DB2

Extender

variable.

Cause:

The

specified

variable

is

not

acceptable

to

the

DB2

extender.

Action:

Correct

the

variable

name

and

try

again.

DMB0468E

The

instance

profile

″<file-name>″

is

not

defined.

Cause:

The

instance

profile

in

the

specified

file

name

is

not

defined.

Action:

Define

the

instance

profile

and

try

again.

DMB0469I

The

current

server

is

enabled

for

″<extender-name>″

extenders.

Cause:

The

current

database

server

is

enabled

for

the

specified

extender.

Action:

No

action

is

required.

DMB0470I

Attach

to

″<subsystem-name>.

Cause:

The

attachment

to

the

specified

subsystem

is

successful.

Action:

No

action

is

required.

DMB0471I

Attach

closed.

Cause:

The

attachment

to

the

specified

subsystem

is

successfully

closed.

Action:

No

action

is

required.

DMB0472I

The

required

WLM

ENVIRONMENT

specification

is

missing.

Cause:

An

expected

WLM

environment

specification

is

missing.

Action:

Add

the

WLM

environment

specification

and

try

again.

Diagnostic

tracing

The

DB2

Extenders

include

a

trace

facility

that

records

extender

server

activity.

You

should

use

the

trace

facility

only

under

instruction

of

IBM

service

personnel.

The

trace

facility

records

information

in

a

server

file

about

a

variety

of

events,

such

as

entry

to

or

exit

from

a

DB2

extender

component

or

the

return

of

an

error

code

by

a

DB2

extender

component.

Because

it

records

information

for

many

events,

the

trace

facility

should

be

used

only

when

necessary,

for

example,

when

you

are

investigating

error

conditions.

In

addition,

you

should

limit

the

number

of

active

applications

when

using

the

trace

facility.

Limiting

the

number

of

active

applications

can

make

it

easier

to

isolate

the

cause

of

a

problem.

Use

the

DMBTRC

command

at

an

z/OS

server

to:

v

Start

tracing

v

Stop

tracing

v

Reformat

trace

information

to

make

it

more

readable

Start

tracing

You

can

start

tracing

by

entering

the

command:

dmbtrc

on

path

where

path

is

the

path

of

a

server

file

that

will

contain

the

trace

information.

The

DB2

Extenders

append

the

appropriate

uid

to

the

specified

path

to

generate

a

file

name

for

the

trace

file.

The

uid

is

based

on

the

external

security

specification

that

is

made

when

the

database

server

is

enabled.

If

EXTERNAL

SECURITY

DB2

is

specified,

the

uid

for

the

pertinent

WLM

environments

is

used.

If

EXTERNAL

SECURITY

USER

is

specified,

the

uid

is

the

primary

authorization

ID

of

the

user

or

application

that

started

the

pertinent

process.

For

further

information

about

external

security

specifications,

see

“Specifying

external

security”

on

page

42.

For

example,

the

following

command

starts

tracing:

Messages

410

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

dmbtrc

on

/tmp/trace

If

EXTERNAL

SECURITY

DB2

was

specified

for

the

database

server,

and

the

uid

of

the

pertinent

WLM

environments

is

99,

the

extenders

will

record

trace

information

in

file

/tmp/trace.99.

If

EXTERNAL

security

user

was

specified

for

the

database

server,

and

the

uid

of

the

user

or

program

that

started

the

pertinent

process

is

1,

the

extenders

will

record

trace

information

in

file

/tmp/trace.1.

Trace

data

is

recorded

in

a

trace

file

only

if

the

pertinent

uid

and

gid

can

be

created

for

the

specified

directory,

and

if

the

uid

and

gid

have

permission

to

write

to

the

file.

DB2MMTRACE

must

be

set:

Before

tracing

can

begin,

the

DB2MMTRACE

environment

variable

must

be

set

to

the

file

name

in

the

WLM

startup

procedure.

You

must

also

set

the

value

of

the

environment

variable

DB2MMTRACE

before

you

first

use

the

DMBTRC

ON

command.

The

file

name

that

you

specify

for

DB2MMTRACE

should

be

the

same

as

the

file

name

specified

for

DB2MMTRACE

in

the

WLM

startup

procedure.

When

you

enter

the

DMBTRC

ON

command,

the

extenders

create

the

file

specified

in

DB2MMTRACE,

and

enter

into

the

file

the

name

of

the

trace

file

path

specified

in

the

DMBTRC

ON

command.

For

performance

reasons,

it

is

best

to

set

DB2MMTRACE

to

the

name

of

a

file

that

currently

does

not

exist.

For

further

information

about

setting

environment

variables

in

the

WLM

environment

startup

procedure,

see

“Setting

environment

variables

in

z/OS”

on

page

414.

You

need

file

permissions:

To

run

the

DMBTRC

command,

you

need

create,

read,

write,

and

delete

permission

on

the

file

identified

by

DB2MMTRACE.

Stop

tracing

You

can

stop

tracing

by

entering

the

command:

dmbtrc

off

Reformat

trace

information

Trace

information

is

recorded

in

binary

format.

You

can

reformat

the

information

and

make

it

more

readable

by

entering

the

following

command:

dmbtrc

format

input_file

output_file

where

input_file

is

the

file

that

contains

the

trace

information

in

binary

format,

and

output_file

is

the

file

that

will

contain

the

reformatted

information.

You

can

specify

multiple

input

files,

but

only

one

output

file

(the

last

file

specified

is

assumed

to

be

the

output

file).

For

example,

the

following

command

reformats

trace

information:

dmbtrc

format

/tmp/extender/trace.1

/tmp/fmt/trace.1.fmt

z/OS

Open

Edition

supports

wildcard

specification

in

file

names.

For

example,

the

following

command

in

z/OS

Open

Edition

reformats

trace

information

in

multiple

input

files,

and

merges

it

into

a

single

output

file.

dmbtrc

format

/tmp/extender/trace.*

/tmp/fmt/trace.fmt

Tracing

Chapter

16.

Diagnostic

information

411

Tracing

412

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Appendix

A.

Setting

environment

variables

for

DB2

Extenders

The

DB2

Extenders

give

you

flexibility

in

how

you

specify

file

names

when

you

store,

retrieve,

or

update

image,

audio,

or

video

objects.

You

also

have

flexibility

in

how

you

specify

programs

to

display

or

play

image,

audio,

and

video

objects

that

are

retrieved

from

a

database

table.

How

environment

variables

are

used

to

resolve

file

names

Although

you

can

specify

a

fully

qualified

file

name,

(that

is,

a

complete

path

followed

by

the

file

name)

for

store,

retrieve,

and

update

operations,

it’s

preferable

to

specify

a

relative

file

name.

In

a

file

system

such

as

HFS,

or

in

AIX

or

Solaris,

a

relative

file

name

is

any

file

name

that

does

not

begin

with

a

slash.

In

Windows,

a

relative

file

name

is

any

file

name

that

does

not

begin

with

a

drive

letter

that

is

followed

by

a

colon

and

backslash.

If

you

specify

a

relative

file

name,

the

extenders

will

use

the

directory

specifications

in

various

client

and

server

environment

variables

to

resolve

the

file

name.

This

allows

files

to

be

moved

in

a

client/server

environment

without

changing

the

file

name.

A

fully

qualified

file

name

would

have

to

be

changed

every

time

a

file

is

moved.

Table

245

lists

and

describes

environment

variables

that

you

can

set

for

use

by

the

Image,

Audio,

and

Video

Extenders

in

resolving

file

names.

Table

245.

Environment

variables

for

DB2

Extenders

Image

Extender

Audio

Extender

Video

Extender

Description

Server

environment

variables

DB2IMAGEPATH

DB2AUDIOPATH

DB2VIDEOPATH

Used

to

resolve

source

file

name

for

store,

retrieve,

and

update

operations

from

a

server

file.

DB2IMAGESTORE

DB2AUDIOSTORE

DB2VIDEOSTORE

Used

to

resolve

target

file

name

for

store

and

update

operations

to

a

server

file.

DB2IMAGEEXPORT

DB2AUDIOEXPORT

DB2VIDEOEXPORT

Used

to

resolve

target

file

name

for

retrieve

operations

to

a

server

file.

DB2IMAGETEMP

Used

to

resolve

target

file

name

for

operations

that

create

temporary

server

files.

However,

if

the

TMP

environment

variable

is

specified,

the

directory

TMP

is

used

to

resolve

file

names.

Client

environment

variables

DB2IMAGEPATH

DB2AUDIOPATH

DB2VIDEOPATH

Used

to

resolve

source

file

name

for

display

and

play

operations

on

a

client

file.

DB2IMAGETEMP

DB2AUDIOTEMP

DB2VIDEOTEMP

Used

to

resolve

target

file

name

for

operations

that

create

temporary

client

files.

However,

if

the

TMP

environment

variable

is

specified,

the

directory

TMP

is

used

to

resolve

file

names.

If

you

don’t

set

the

appropriate

environment

variable

for

the

specific

extender,

the

extender

will

use

the

following

environment

variables

to

resolve

file

names:

Environment

variable

Description

©

Copyright

IBM

Corp.

1998,

2001

413

DB2MMPATH

Used

to

resolve

source

file

name

for

store,

retrieve,

and

update

operations.

DB2MMSTORE

Used

to

resolve

target

file

name

for

store

and

update

operations.

DB2MMEXPORT

Used

to

resolve

target

file

name

for

retrieve

operations.

DB2MMTEMP

Used

to

resolve

file

name

for

operations

that

create

temporary

files.

How

environment

variables

are

used

to

identify

display

or

play

programs

In

addition

to

resolving

file

names,

environment

variables

are

also

used

to

identify

programs

to

display

image

objects

retrieved

by

the

Image

Extender

and

play

audio

or

video

objects

retrieved

by

the

Audio

and

Video

Extender.

You

use

the

DBiBrowse,

DBaPlay,

and

DBvPlay

APIs,

respectively

to

display

or

play

these

objects.

When

you

use

each

API,

you

can

specify

a

display

or

play

program

or

you

can

indicate

that

you

want

a

default

program

to

display

or

play

the

object.

The

DB2

Extenders

use

the

following

environment

variables

in

the

client

to

identify

the

default

display

or

play

programs:

Environment

variable

Description

DB2IMAGEBROWSER

Used

to

identify

the

default

image

display

program.

DB2AUDIOPLAYER

Used

to

identify

the

default

audio

player

program.

DB2VIDEOPLAYER

Used

to

identify

the

default

video

player

program.

Setting

environment

variables

You

can

set

environment

variables

in

z/OS,

AIX,

Solaris,

and

Windows.

Setting

environment

variables

in

z/OS

In

z/OS,

environment

variables

are

specified

in

a

DSN

in

the

DMBENVAR

DD

card

in

the

WLM

managed

startup

proc,

for

example,

DMBWLM1.

The

following

is

a

sample

DMBWLM1

procedure:

//V61AWLM1

PROC

DB2SSN=V61A,NUMTCB=18,APPLENV=DMBWLM1

//TCBNUM1

EXEC

PGM=DSNX9WLM,TIME=1440,

//

PARM=’&DB2SSN,&NUMTCB,&APPLENV’,REGION=0M

//STEPLIB

DD

DSN=DSN610.SDSNLOAD,DISP=SHR

<==

DB2

Load

Library

//

DD

DSN=DMB.V61.LOADLIB,DISP=SHR

<==

DB2EXT

Load

library

//CEEDUMP

DD

SYSOUT=H

//SYSPRINT

DD

SYSOUT=H

//SYSDUMP

DD

SYSOUT=H

//DMBENVAR

DD

DISP=SHR,DSN=&HQL.DMB.ENVAR

<=

DB2EXT

ENV

Variable

File

//*DSNAOTRC

DD

DISP=SHR,DSN=&HQL.DMB.DSNAOTRC

<=

DB2

CLI

Trace

The

following

is

a

sample

of

the

contents

of

global

environment

variables

defined

in

file

DMB.ENVAR:

DB2MMPATH=/usr/lpp/db2ext_06_01_00/samples:/tmp

DB2MMTEMP=/tmp

DB2MMSTORE=/tmp

DB2MMEXPORT=/tmp

Environment

variables

414

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Setting

environment

variables

in

AIX

and

Solaris

clients

In

AIX

and

Solaris,

the

environment

variables

are

specified

in

C

shell,

Korn

shell,

and

Bourne

shell

scripts.

The

client

environment

variables

are

set

as

follows

when

you

install

the

DB2

Extenders

in

an

AIX

or

Solaris

client:

C

shell

setenv

DB2MMPATH

/tmp

setenv

DB2MMTEMP

/tmp

Korn

and

Bourne

shell

DB2MMPATH=/tmp

export

DB2MMPATH

DB2MMTEMP=/tmp

export

DB2MMTEMP

Set

the

client

environment

variables

that

are

used

to

resolve

file

names.

Specify

values

that

are

appropriate

for

your

environment.

You

can

specify

multiple

directories,

separated

by

a

delimiter,

for

the

environment

variables

that

end

in

PATH.

The

environment

variables

that

end

in

STORE,

EXPORT,

and

TEMP

are

set

with

one

directory

only.

Specify

the

names

of

the

appropriate

image

display,

audio

play,

and

video

play

programs

in

the

DB2IMAGEBROWSER,

DB2AUDIOPLAYER,

and

DB2VIDEOPLAYER

client

environment

variables,

respectively.

You

can

change

the

initial

settings

of

the

environment

variables

as

follows:

C

shell

Use

the

SETENV

command

to

set

environment

variables:

setenv

env-var

directory

For

example:

setenv

DB2MMPATH

/usr/lpp/db2ext/samples:/media

setenv

DB2IMAGEPATH

/employee/pictures:/images

setenv

DB2AUDIOSTORE

/employee/sounds

setenv

DB2IMAGEBROWSER

'xv

%s'

Bourne

shell

Use

the

EXPORT

command

to

set

environment

variables:

env-var=directory

export

env-var

For

example:

DB2MMPATH=/usr/lpp/db2ext/samples:/media

export

DB2MMPATH

DB2IMAGEPATH=/employee/pictures:/images

export

DB2IMAGEPATH

DB2AUDIOSTORE=/employee/sounds

export

DB2AUDIOSTORE

Environment

variables

Appendix

A.

Setting

environment

variables

for

DB2

Extenders

415

Korn

shell

Use

the

EXPORT

command

to

set

environment

variables:

export

env-var=directory

For

example:

export

DB2MMPATH=/usr/lpp/db2ext/samples:/media

export

DB2IMAGEPATH=/employee/pictures:/images

export

DB2AUDIOSTORE=/employee/sounds

Setting

environment

variables

in

Windows

clients

In

Windows

NT,

environment

variables

are

stored

in

the

system

registry.

Variables

can

be

set

by

opening

the

Windows

NT

control

panel

and

selecting

the

system

icon.

From

the

System

Properties

dialog,

select

the

Environment

tab.

There

are

two

windows

containing

environment

variables

and

their

values.

The

top

window

displays

variables

which

are

in

effect

for

all

users.

The

bottom

window

displays

variables

which

are

in

effect

for

only

the

current

user.

Environment

variables

416

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Appendix

B.

Sample

programs

and

media

files

Included

with

the

DB2

Extenders

are

various

sample

programs.

The

sample

programs

use

image,

audio,

and

video

files

that

are

also

supplied

with

the

extenders.

All

of

the

sample

programs

are

in

Call

Level

Interface

(CLI)

format.

The

sample

programs

are

installed

in

the

SAMPLES

MVS

partitioned

data

set

of

the

target

library,

and

in

the

SAMPLES

Open

Edition

directory

when

you

install

the

DB2

Extenders.

The

image,

audio,

and

video

files

are

also

installed

in

the

SAMPLES

Open

Edition

directory

when

you

install

the

DB2

Extenders.

For

installation,

you

need

to

ensure

that

the

extenders

environment

variable

DB2MMPATH

is

set

to

point

to

the

SAMPLES

directory.

Sample

programs

A

number

of

files

comprise

the

sample

programs

for

DB2

Extenders.

Open

Edition

MVS

Description

enable.c

ENABLE

Enables

a

database

server

for

the

Audio,

Image,

and

Video

Extenders,

creates

a

table,

and

enables

the

table

and

its

columns.

populate.c

POPULATE

Imports

data

into

the

table.

query.c

QUERY

Queries

the

data

in

the

table.

api.c

API

Queries

the

database

server

using

extender

APIs.

handle.c

HANDLE

Demonstrates

the

use

of

handles

in

UDFs

and

how

to

make

where

clause

comparisons

in

SELECT

statements.

qbcatdmo.c

QBCATDMO

Creates

a

QBIC

catalog

and

catalogs

a

column

of

images

into

the

catalog

qbicdemo.c

QBICDEMO

Queries

a

QBIC

catalog

color.c

COLOR

Makes

color

table

declarations

for

qbicdemo.c

utility.c

UTILITY

Utility

routines.

utility.h

UTILITY

Header

file

for

utility

routines

makefile.aix

Makefile

to

build

the

programs

in

AIX

makefile.iva

Makefile

to

build

the

programs

in

Windows

NT

(or

later)

using

IBM

VisualAge

C++

makefile.mvc

Makefile

to

build

the

programs

using

Microsoft

Visual

C++

makefile.sun

Makefile

to

build

the

programs

in

Solaris

Executable

files

are

provided

for

the

following

sample

programs.

The

sample

programs

are

intended

to

be

run

in

the

order

that

is

shown.

©

Copyright

IBM

Corp.

1998,

2001

417

1.

Enable

2.

Populate

3.

Query

4.

API

5.

Handle

6.

Qbcatdmo

7.

Qbicdemo

Prior

to

running

the

sample

programs,

you

must

create

a

database

on

your

server.

The

extender

services

must

have

also

been

started

on

the

server.

To

run

a

sample

program,

type

the

program

name

(this

starts

the

program’s

executable

file).

You

will

be

prompted

for

the

DB2

for

z/OS

location

name.

You

can

also

build

in

TSO

or

UNIX

environments

your

own

executable

files

for

the

sample

programs.

To

do

that,

you

need

to:

1.

Copy

the

sample

media

files

to

a

writable

Open

Edition

directory

(the

DB2MMPATH

environment

variable

should

point

to

this

directory).

2.

For

TSO:

Edit

the

sample

JCL

(see

Figure

25

on

page

419)

to

specify

the

locations

on

your

system

where

the

extenders,

DB2,

and

the

compiler

are

installed.

In

the

sample

JCL,

the

libraries

(PDS)

are

allocated

as:

DMB.V61.SAMPLE.C

—

sample

C

code

DMB.V61.SAMPLE.H

—

sample

header

files

DMB.V61.SAMPLE.OBJLIB

—

object

library

DMB.V61.SAMPLE.PRELINK

—

prelink

library

DMB.V61.SAMPLE.LOADLIB

—

load

library

Submit

the

JCL

to

compile,

prelink,

and

link

edit

the

sample

programs.

For

UNIX:

Use

the

OEDIT

command

to

edit

the

makefile.

3.

Bind

a

sample

plan

(see

Figure

26

on

page

424).

The

default

plan

name

is

DMBACLI.

4.

Set

up

the

CLI.INI

file

(see

Figure

27

on

page

425).

5.

For

TSO,

set

STEPLIB

concatenation

(see

Figure

28

on

page

425).

For

further

information

about

installing

and

using

the

sample

programs,

see

the

Program

Directory

for

IBM

Database

2

Universal

Database

Server

for

OS/390,

Volume

1

of

8.

Sample

programs

418

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Step

1)

Compile

the

sample

programs

Example

of

compile

sample

JCL

//DMBSAMC

JOB

CLASS=A,TIME=(15,59),

//

MSGCLASS=H,MSGLEVEL=(1,1),USER=&SYSUID,REGION=0K,

//

NOTIFY=&SYSUID,PASSWORD=&SYSUID

//*ROUTE

PRINT

hostname.userid

//*---

//DMBC

PROC

LNGPRFX=’CBC’,

//

CLANG=’EDCMSGE’,

USED

IN

THIS

RELEASE.

KEPT

FOR

COM

//

CXXLANG=’CBCMSGE’,

USED

IN

THIS

RELEASE.

KEPT

FOR

COM

//

CREGSIZ=’16M’,

//

CPARM=,

<

COMPILER

OPTIONS

//

CPARM2=,

<

COMPILER

OPTIONS

//

CPARM3=,

<

COMPILER

OPTIONS

//

LIBPRFX=’SYS1’,

//

TUNIT=’VIO’,

//

OPT=OPTC,

<

AIV

DFLT

OPT

FILE

//DCB80=’(RECFM=FB,LRECL=80,BLKSIZE=3200)’,

FOR

LRECL

80

//DCB3200=’(RECFM=FB,LRECL=3200,BLKSIZE=12800)’

FOR

LRECL

3200

//*---

/*

SAMPLE

/*---

//API

EXEC

DMBC,M=API,CPARM=NOEXPORTALL

//ENABLE

EXEC

DMBC,M=ENABLE,CPARM=NOEXPORTALL

//HANDLE

EXEC

DMBC,M=HANDLE,CPARM=NOEXPORTALL

//QUERY

EXEC

DMBC,M=QUERY,CPARM=NOEXPORTALL

//UTILITY

EXEC

DMBC,M=UTILITY

Compile

option

file

as:

SEARCH(’DSN610.SDSNC.+’,’DMB.V61.SAMPLE.+’,’DMB.V61A.MACS’)

SEARCH(’SYS1.SCEEH.+’,’CBC.SCLBH.+’)

LSEARCH(’DSN610.SDSNC.+’)

DEF(UDEBUG,DMB_EXTENDERS,DMB_MVS,DMB_UNIX,DMB_NO_COLLECTIONS,DB2MVS)

DEF(_OPEN_THREADS,_XOPEN_SOURCE_EXTENDED,_OPEN_DEFAULT,NO_X11)

DEF(errno=(*__errno()),NO_DB2)

DEF(DMB_UNIX_DIRECTORY="/opt/IBMdb2ex/V6.0/")

NOMAR,NOSEQ,LOCALE(POSIX),LANGLVL(ANSI)

OBJECT,LONGNAME,RENT

DLL,EXPORTALL

NOAGGR,NOXREF,NOLIST,SOURCE,NOEXPMAC,NOSHOWINC,SSCOMM,NONESTINC(*)

TEST(ALL)

Figure

25.

Sample

JCL

(Part

1

of

5)

Sample

programs

Appendix

B.

Sample

programs

and

media

files

419

Step

2)

Prelink

and

Linkedit

//DMBSAMPK

JOB

CLASS=A,TIME=(,15),

//

MSGCLASS=H,MSGLEVEL=(1,1),USER=&SYSUID,REGION=0K

//*

PASSWORD=&SYSUID

//*ROUTE

PRINT

hostname.userid

//*---

//*

PRELINK:

SAMPLES

//*---

//*

PRELINK

INLINE

PROC

AND

PARMS

//*---

//DMBSAMPK

PROC

LIBPRFX=’SYS1’,LNGPRFX=’CBC’,M=

//PRELINK

EXEC

PGM=EDCPRLK,

//

PARM=’POSIX(OFF)/OE,MEMORY,DUP,NOER,MAP,NOUPCASE,NONCAL,OMVS’

//STEPLIB

DD

DISP=SHR,DSN=&LIBPRFX..SCEERUN

<==

INPUT

CEE/EC

//SCEEOBJ

DD

DISP=SHR,DSN=&LIBPRFX..SCEEOBJ

<==

INPUT

CEE/EC

//SCEECPP

DD

DISP=SHR,DSN=&LIBPRFX..SCEECPP

<==

INPUT

CEE/EC

//SCLBCPP

DD

DISP=SHR,DSN=&LNGPRFX..SCLBCPP

<==

INPUT

COMPILE

//SYSMSGS

DD

DISP=SHR,DSN=&LIBPRFX..SCEEMSGP(EDCPMSGE)

//SYSUT1

DD

UNIT=SYSDA,SPACE=(TRK,(10,10))

//SYSPRINT

DD

SYSOUT=*

//SYSOUT

DD

SYSOUT=*

//*

//CBCLIB

DD

DISP=SHR,DSN=&LNGPRFX..SCLBSID

<==

INPUT

CBC

//DB2XLIB

DD

DISP=SHR,DSN=DMB.DSN610.SDSNMACS.EXP

<==

INPUT

DB2

EXP

//OBJLIB

DD

DISP=SHR,DSN=DMB.V61.SAMPLE.OBJLIB

<==

INPUT

OBJS

//EXPLIB

DD

DISP=SHR,DSN=DMB.V61A.EXP

<==

INPUT

EXP

//SYSMOD

DD

DISP=SHR,DSN=DMB.V61.SAMPLE.PRELINK(&M)

<==

OUTPUT

DLL

//SYSDEFSD

DD

DISP=SHR,DSN=DMB.V61.SAMPLE.EXP(&M)

<==

OUTPUT

EXP

//SYSIN

DD

DUMMY

//DMBSAMPK

PEND

//*---

//*

SAMPLE:

API

//*---

//API

EXEC

DMBSAMPK,M=API

//PRELINK.SYSIN

DD

*

INCLUDE

OBJLIB(API)

INCLUDE

OBJLIB(UTILITY)

INCLUDE

DB2XLIB(DSNAOCLI)

INCLUDE

EXPLIB(DMBAUDIO)

INCLUDE

EXPLIB(DMBIMAGE)

INCLUDE

EXPLIB(DMBVIDEO)

LIBRARY

SCEEOBJ

LIBRARY

SCEECPP

Figure

25.

Sample

JCL

(Part

2

of

5)

Sample

programs

420

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

//*---

//*

SAMPLE:

ENABLE

//*---

//ENABLE

EXEC

DMBSAMPK,M=ENABLE

//PRELINK.SYSIN

DD

*

INCLUDE

OBJLIB(ENABLE)

INCLUDE

OBJLIB(UTILITY)

INCLUDE

DB2XLIB(DSNAOCLI)

INCLUDE

EXPLIB(DMBAUDIO)

INCLUDE

EXPLIB(DMBIMAGE)

INCLUDE

EXPLIB(DMBVIDEO)

LIBRARY

SCEEOBJ

LIBRARY

SCEECPP

//*---

//*

SAMPLE:

HANDLE

//*---

//HANDLE

EXEC

DMBSAMPK,M=HANDLE

//PRELINK.SYSIN

DD

*

INCLUDE

OBJLIB(HANDLE)

INCLUDE

OBJLIB(UTILITY)

INCLUDE

DB2XLIB(DSNAOCLI)

INCLUDE

EXPLIB(DMBAUDIO)

INCLUDE

EXPLIB(DMBIMAGE)

INCLUDE

EXPLIB(DMBVIDEO)

LIBRARY

SCEEOBJ

LIBRARY

SCEECPP

//*---

//*

SAMPLE:

POPULATE

//*---

//POPULATE

EXEC

DMBSAMPK,M=POPULATE

//PRELINK.SYSIN

DD

*

INCLUDE

OBJLIB(POPULATE)

INCLUDE

OBJLIB(UTILITY)

INCLUDE

DB2XLIB(DSNAOCLI)

INCLUDE

EXPLIB(DMBAUDIO)

INCLUDE

EXPLIB(DMBIMAGE)

INCLUDE

EXPLIB(DMBVIDEO)

LIBRARY

SCEEOBJ

LIBRARY

SCEECPP

Figure

25.

Sample

JCL

(Part

3

of

5)

Sample

programs

Appendix

B.

Sample

programs

and

media

files

421

//*---

//*

SAMPLE:

QUERY

//*---

//QUERY

EXEC

DMBSAMPK,M=QUERY

//PRELINK.SYSIN

DD

*

INCLUDE

OBJLIB(QUERY)

INCLUDE

OBJLIB(UTILITY)

INCLUDE

DB2XLIB(DSNAOCLI)

INCLUDE

EXPLIB(DMBAUDIO)

INCLUDE

EXPLIB(DMBIMAGE)

INCLUDE

EXPLIB(DMBVIDEO)

LIBRARY

SCEEOBJ

LIBRARY

SCEECPP

Example

of

Linkedit

JCL:

//DMBSAMLK

JOB

CLASS=A,TIME=(,15),

//

MSGCLASS=H,MSGLEVEL=(1,1),USER=&SYSUID,REGION=0K

//*

PASSWORD=&SYSUID

//*ROUTE

PRINT

STLVM6.xxxx

//*---

//*

LINKEDIT:

ALL

CLIENT

FUNCS

(COMMAND

AND

*CLT)

//*---

//DMBCLTLK

PROC

LIBPRFX=’SYS1’

//LKED

EXEC

PGM=LINKEDIT,REGION=16M,

//

PARM=(’AMODE=31,RMODE=ANY,LIST’,’REUS=RENT,CALL,CASE=MIXED’,

//

’DYNAM=DLL,MAP’)

//SYSLIB

DD

DISP=SHR,DSNAME=&LIBPRFX..SCEELKEX

//

DD

DISP=SHR,DSNAME=&LIBPRFX..SCEELKED

//

DD

DISP=SHR,DSNAME=&LIBPRFX..CSSLIB

//DB2LIB

DD

DISP=SHR,DSNAME=DMB.DSN610.SDSNLOAD

<==

INPUT

DSNHLI

//PRELIB

DD

DISP=SHR,DSN=DMB.V61.SAMPLE.PRELINK

<==

INPUT

PRELINK

//SYSUT1

DD

UNIT=SYSDA,SPACE=(TRK,(10,10))

//SYSPRINT

DD

SYSOUT=*

//SYSLMOD

DD

DISP=SHR,DSN=DMB.V61.SAMPLE.LOADLIB

<==

OUT

LOAD

MODS

//SYSLIN

DD

DUMMY

//DMBCLTLK

PEND

Figure

25.

Sample

JCL

(Part

4

of

5)

Sample

programs

422

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

//*---

//*

COMMAND

AND

*CLT

LINKEDIT

LIST

//*INCLUDE

DB2LIB(DSNTIAR)

//*INCLUDE

DB2LIB(DSNALI)

//*---

//DMBCLT

EXEC

DMBCLTLK

//LKED.SYSLIN

DD

*

INCLUDE

PRELIB(API)

NAME

API(R)

INCLUDE

PRELIB(ENABLE)

NAME

ENABLE(R)

INCLUDE

PRELIB(HANDLE)

NAME

HANDLE(R)

INCLUDE

PRELIB(POPULATE)

NAME

POPULATE(R)

INCLUDE

PRELIB(QUERY)

NAME

QUERY(R)

/*

Figure

25.

Sample

JCL

(Part

5

of

5)

Sample

programs

Appendix

B.

Sample

programs

and

media

files

423

//BINDALL

JOB

CLASS=A,

//

MSGCLASS=H,MSGLEVEL=(1,1),REGION=0K,TIME=NOLIMIT,

//

USER=SYSADM,PASSWORD=SYSADM,NOTIFY=&SYSUID

//*ROUTE

PRINT

hostname.userid

//***/

//JOBLIB

DD

DISP=SHR,DSN=DB2A.SDSNLOAD

//*

//

SET

DMBFQP=DMB.V61A

//*

//BINDCLI

EXEC

PGM=IKJEFT01,DYNAMNBR=20

//DBRMLIB

DD

DISP=SHR,

//

DSN=REDEM.DBRMLIB.DATA

//SYSTSPRT

DD

SYSOUT=*

//SYSPRINT

DD

SYSOUT=*

//SYSUDUMP

DD

SYSOUT=*

//SYSTSIN

DD

*

DSN

SYSTEM(V61A)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLICS)

ISOLATION(CS)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLINC)

ISOLATION(NC)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLIRR)

ISOLATION(RR)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLIRS)

ISOLATION(RS)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLIUR)

ISOLATION(UR)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLIC1)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLIC2)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLIF4)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLIMS)

BIND

PACKAGE

(DSNAOCLI)

MEMBER(DSNCLIQR)

BIND

PLAN(DMBACLI)

-

PKLIST(DSNAOCLI.DSNCLICS

-

DSNAOCLI.DSNCLINC

-

DSNAOCLI.DSNCLIRR

-

DSNAOCLI.DSNCLIRS

-

DSNAOCLI.DSNCLIUR

-

DSNAOCLI.DSNCLIC1

-

DSNAOCLI.DSNCLIC2

-

DSNAOCLI.DSNCLIF4

-

DSNAOCLI.DSNCLIMS

-

DSNAOCLI.DSNCLIQR

-

MMDBSYS_CLIENT.*

-

MMDBSYS_RUN.*

)

END

/*

Figure

26.

Sample

Bind

Sample

programs

424

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Sample

image,

audio,

and

video

files

The

sample

image,

audio,

and

video

files

that

are

provided

with

the

DB2

Extenders

are:

v

Image

Files

–

lizzi.bmp

–

sws_stri.bmp

–

nitecry.bmp

–

ranger_r.bmp

–

fuzzblue.bmp

v

Audio

Files

–

lizzi.wav

–

sws_stri.wav

–

nitecry.wav

–

ranger_r.wav

–

fuzzblue.wav

v

Video

Files

–

nitecry.avi

–

sample.mpg

Under

TSO,

a

DD

name

of

DSNAOINI

must

be

allocated

for

the

DB2

CLI

initialization

processing.

alloc

dd(dsnaoini)

da(’&HQL.cli.ini6’)

shr

Example

of

CLI.INI

file(&HQL.cli.ini6):

;

Common

stanza

[COMMON]

MVSDEFAULTSSID=V61A

;

Subsystem

stanza

for

V61A

subsystem

using

DMBACLI

plan

;

[V61A]

PLANNAME=DMBACLI

;

Data

source

stanza

for

STLEC1

[STLEC1]

;

Figure

27.

Setting

up

the

CLI.INI

file

Under

TSO,

use

TSOLIB

command

to

setup

the

DB2

LOADLIB

and

DB2

Extenders

LOADLIB.

Example

of

TSO

Libraries

concatenation

tsolib

act

dsn(’DMB.V61.LOADLIB’,’DSN610.SDSNLOAD’)

where

DMB.V61.LOADLIB

is

DB2

Extender

load

library,

and

DSN610.SDSNLOAD

is

DB2

load

library.

Figure

28.

Sample

STEPLIB

concatenation

Sample

programs

Appendix

B.

Sample

programs

and

media

files

425

Sample

media

files

426

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

©

Copyright

IBM

Corp.

1998,

2001

427

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Programming

interface

information

This

publication

is

intended

to

help

you

administer

DB2

Extenders

for

z/OS

and

develop

programs

for

use

with

DB2

Extenders

for

z/OS.

This

publication

documents

General-use

Programming

Interface

and

Associated

Guidance

Information

provided

by

DB2

Extenders

for

z/OS.

General-use

programming

interfaces

allow

you

to

write

programs

that

obtain

the

services

of

DB2

Extenders

for

z/OS.

You

may

copy

the

DB2

Extenders

for

z/OS

run-time

feature

needed

for

the

application

you

develop

onto

client

or

server

machines.

To

install

the

run-time

feature

onto

a

client

machine,

see

the

installation

instructions

provided

in

the

README.TXT

file

for

your

operating

system

on

the

DB2

Extenders

for

z/OS

clients

CD-ROM.

To

install

the

run-time

feature

onto

a

server

machine,

see

the

installation

instructions

provided

in

the

extender

sections

of

the

Program

Directory

for

DB2

for

z/OS

V6.

428

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

AIX

DB2

DB2

Extenders

DB2

Universal

Database

IBM

MVS

OS/2

OS/390

QBIC

RACF

z/OS

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

or

registered

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Intel

is

a

registered

trademark

of

Intel.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

429

430

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Glossary

API.

See

application

programming

interface.

application

programming

interface

(API).

(1)

A

functional

interface

supplied

by

the

operating

system

or

by

a

separately

orderable

licensed

program.

An

API

allows

an

application

program

that

is

written

in

a

high-level

language

to

use

specific

data

or

functions

of

the

operating

system

or

the

licensed

programs.

(2)

In

DB2,

a

function

within

the

interface,

for

example,

the

get

error

message

API.

(3)

distinct

type.

See

user-defined

type.

UDF.

See

user-defined

function.

UDT.

See

user-defined

type.

©

Copyright

IBM

Corp.

1998,

2001

431

432

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Index

A
access

privileges

32

ADD

QBIC

FEATURE

command

111,

359

administration

commands

on

client

357

ADD

QBIC

FEATURE

359

CATALOG

QBIC

COLUMN

360

CLOSE

QBIC

CATALOG

361

CREATE

QBIC

CATALOG

362

DELETE

QBIC

CATALOG

364

DISABLE

COLUMN

365

DISABLE

SERVER

366

DISABLE

TABLE

367

ENABLE

COLUMN

368

ENABLE

SERVER

369

ENABLE

TABLE

371

GET

EXTENDER

STATUS

373

GET

INACCESSIBLE

FILES

374

GET

QBIC

CATALOG

INFO

376

GET

REFERENCED

FILES

377

GRANT

379

OPEN

QBIC

CATALOG

381

QUIT

382

REMOVE

QBIC

FEATURE

383

REVOKE

384

TERMINATE

386

administration

task

overview

37

administrative

support

tables

14

description

14

security

32

alignment

value

of

audio

or

video

151

AlignValue

UDF

151

allocation

resources

69

application

programming

interfaces

(APIs)

219

DBaAdminGetInaccessibleFiles

220

DBaAdminGetReferencedFiles

222

DBaAdminIsFileReferenced

224

DBaDisableColumn

226

DBaDisableServer

228

DBaDisableTable

229

DBaEnableColumn

231

DBaEnableServer

233

DBaEnableTable

235

DBaGetError

237

DBaGetInaccessibleFiles

238

DBaGetReferencedFiles

240

DBaIsColumnEnabled

242

DBaIsFileReferenced

244

DBaIsServerEnabled

246

DBaIsTableEnabled

247

DBaPlay

249

DBaPrepareAttrs

251

DBiAdminGetInaccessibleFiles

252

DBiAdminGetReferencedFiles

254

DBiAdminIsFileReferenced

256

DBiBrowse

258

DBiDisableColumn

260

DBiDisableServer

262

application

programming

interfaces

(APIs)

(continued)
DBiDisableTable

263

DBiEnableColumn

265

DBiEnableServer

267

DBiEnableTable

269

DBiGetError

271

DBiGetInaccessibleFiles

272

DBiGetReferencedFiles

274

DBiIsColumnEnabled

276

DBiIsFileReferenced

278

DBiIsServerEnabled

280

DBiIsTableEnabled

281

DBiPrepareAttrs

283

DBvAdminGetInaccessibleFiles

284

DBvAdminGetReferencedFiles

286

DBvAdminIsFileReferenced

288

DBvDisableColumn

290

DBvDisableServer

292

DBvDisableTable

293

DBvEnableColumn

295

DBvEnableServer

297

DBvEnableTable

299

DBvGetError

301

DBvGetInaccessibleFiles

302

DBvGetReferencedFiles

304

DBvIsColumnEnabled

306

DBvIsFileReferenced

308

DBvIsServerEnabled

310

DBvIsTableEnabled

311

DBvPlay

313

DBvPrepareAttrs

315

QbAddFeature

316

QbCatalogColumn

318

QbCloseCatalog

320

QbCreateCatalog

321

QbDeleteCatalog

323

QbGetCatalogInfo

325

QbListFeatures

327

QbOpenCatalog

329

QbQueryAddFeature

331

QbQueryCreate

333

QbQueryDelete

334

QbQueryGetFeatureCount

335

QbQueryGetString

336

QbQueryListFeatures

337

QbQueryNameCreate

339

QbQueryNameDelete

341

QbQueryNameSearch

342

QbQueryRemoveFeature

344

QbQuerySearch

346

QbQuerySetFeatureData

348

QbQuerySetFeatureWeight

350

QbQueryStringSearch

351

QbReCatalogColumn

353

QbRemoveFeature

355

aspect

ratio

of

video

152

AspectRatio

UDF

152

attributes,

object

88

©

Copyright

IBM

Corp.

1998,

2001

433

attributes,

object

(continued)
alignment

value

151

aspect

ratio

152

audio

channels

(number

of)

192

bits

per

sample

of

audio

153

clock

speed

per

quarter

note

213

clock

speed

per

second

214

colors

in

image

(number

of)

193

comment

155

compression

format

of

video

157

data

transfer

rate

of

audio

154

data

transfer

rate

of

video

190

description

88

duration

of

audio

or

video

179

file

name

180

format

183

frame

rate

of

video

184

frames

in

video

(number

of)

194

height

187

import

time

189

importer

188

number

of

audio

channels

192

number

of

audio

tracks

191

number

of

colors

in

image

193

number

of

frames

in

video

194

number

of

video

tracks

195

playing

time

of

audio

or

video

179

sampling

rate

of

audio

209

size

210

throughput

of

audio

154

throughput

of

video

184,

190

time

stored

189

time

updated

216

track

name,

MIDI

182

track

names,

MIDI

186

track

number

of

all

MIDI

instruments

185

track

number

of

MIDI

instrument

181

update

time

216

updater

215

user

ID

of

person

who

stored

188

user

ID

of

person

who

updated

215

video

tracks

(number

of)

195

width

217

audio

3

alignment

of

151

bits

per

sample

153

channels

(number

of)

192

clock

speed,

MIDI

213,

214

comment

attribute

155

data

transfer

rate

154

duration

179

file

name

180

format

attribute

183

formats

71

identifying

format

for

storage

79

identifying

format

for

update

98

import

time

189

importer

188

number

of

channels

192

number

of

tracks

191

playing

103

audio

(continued)
playing

time

179

retrieving

84

sampling

rate

209

size

210

storing

73

throughput

154

time

stored

189

time

updated

216

track

name,

MIDI

182

track

names,

MIDI

186

track

number

of

all

MIDI

instruments

185

track

number

of

MIDI

instrument

181

tracks

in

(number

of)

191

update

time

216

updater

215

updating

90

user

ID

of

person

who

stored

188

user

ID

of

person

who

updated

215

Audio

Extender

4

DBaAdminGetInaccessibleFiles

API

220

DBaAdminGetReferencedFiles

API

222

DBaAdminIsFileReferenced

API

224

DBaDisableColumn

API

226

DBaDisableServer

API

228

DBaDisableTable

API

229

DBaEnableColumn

API

231

DBaEnableServer

API

233

DBaEnableTable

API

235

DBaGetError

API

237

DBaGetInaccessibleFiles

API

238

DBaGetReferencedFiles

API

240

DBaIsColumnEnabled

API

242

DBaIsFileReferenced

API

244

DBaIsServerEnabled

API

246

DBaIsTableEnabled

API

247

DBaPlay

API

249

overview

4

UDFs

147

UDTs

147

authorization

35

average

color

16

description

16

feature

name

111

B
backup

35

binary

large

object

(BLOB)

11

description

11

security

32

storing

an

object

as

78

updating

97

bind

file

67

binding

67

BitsPerSample

UDF

153

buffer,

client

64

retrieving

to

with

conversion

86

retrieving

to

without

format

conversion

85

storing

from

77

transmitting

an

object

to

or

from

64

434

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

buffer,

client

(continued)
updating

from

96

BytesPerSec

UDF

154

C
Call

Attachment

Facility

Open

function

69

catalog

(QBIC)

16

adding

a

feature

to

111

closing

115

creating

108

deleting

115

description

16

managing

108

opening

110

recataloging

an

image

in

114

removing

a

feature

from

112

retrieving

information

about

112

CATALOG

QBIC

COLUMN

command

113,

360

cataloging

a

column

113

recataloging

an

image

114

channels,

number

of

audio

192

character

large

object

(CLOB)

11

CLI

calls,

preparing

67

client

buffer

64

retrieving

to

with

conversion

86

retrieving

to

without

format

conversion

85

storing

from

77

transmitting

an

object

to

or

from

64

updating

from

96

client

file

65

retrieving

to

86

storing

from

77

transmitting

an

object

to

or

from

65

updating

from

96

client/server

platforms

for

DB2

Extenders

9

CLOB

(character

large

object)

11

CLOSE

QBIC

CATALOG

command

115,

361

coarseness

17

codes,

return

387

colors,

number

of

(in

image)

193

columns

48

disabling

49

enabling

48

commands

357

ADD

QBIC

FEATURE

359

CATALOG

QBIC

COLUMN

360

CLOSE

QBIC

CATALOG

361

CREATE

QBIC

CATALOG

362

DELETE

QBIC

CATALOG

364

DISABLE

COLUMN

365

DISABLE

SERVER

366

DISABLE

TABLE

367

ENABLE

COLUMN

368

ENABLE

SERVER

369

ENABLE

TABLE

371

GET

EXTENDER

STATUS

373

GET

INACCESSIBLE

FILES

374

GET

QBIC

CATALOG

INFO

376

GET

REFERENCED

FILES

377

GRANT

379

commands

(continued)
OPEN

QBIC

CATALOG

381

QUIT

382

REMOVE

QBIC

FEATURE

383

REVOKE

384

TERMINATE

386

comment

83

retrieving

89

storing

83

updating

101

Comment

UDF

155

compatibility

mode

32

compiling

67

compression

format

of

video

157

compression

type

72

CompressType

UDF

157

concepts

11

Content

UDF

158

ContentA

UDF

162

contrast

17

conversion

options,

image

72

CREATE

QBIC

CATALOG

command

108,

362

current

path

13

CURRENT

PATH

special

register

13

CURRENT

SERVER

special

register

73

D
data

structures

14

administrative

support

table

14

handle

15

QBIC

catalog

16

data

transfer

rate

of

audio

154

data

transfer

rate

of

video

190

Database

Request

Module

(DBRM)

67

database

servers

42

checking

if

enabled

51

enabling

42

DB2

extender

3

codes

387,

388

concepts

11

data

structures

14

family

of

4

operating

environments

9

overview

3

planning

for

31

programming

overview

59

retrieving

objects

using

71

return

codes

387

run-time

environment

4

sample

media

files

417

sample

programs

417

scenario

19

security

32

Software

Developers

Kit

(SDK)

4

SQLSTATE

codes

388

storing

objects

using

71

tasks

that

can

be

performed

with

60

trace

facility

410

UDFs

147

UDTs

147

Index

435

DB2

extender

(continued)
updating

objects

using

71

DB2

ODBC

environment

67

DB2AUDIO

data

type

147

DB2Audio

UDF

164

DB2AudioA

UDF

166

DB2AUDIOEXPORT

environment

variable

413

DB2AUDIOPATH

environment

variable

413

DB2AUDIOPLAYER

environment

variable

103

DB2AUDIOSTORE

environment

variable

413

DB2AUDIOTEMP

environment

variable

413

db2ext

command-line

processor

5

DB2IMAGE

data

type

147

DB2Image

UDF

169

DB2ImageA

UDF

172

DB2IMAGEBROWSER

environment

variable

103

DB2IMAGEEXPORT

environment

variable

413

DB2IMAGEPATH

environment

variable

413

DB2IMAGESTORE

environment

variable

413

DB2IMAGETEMP

environment

variable

413

DB2VIDEO

data

type

147

DB2Video

UDF

174

DB2VideoA

UDF

176

DB2VIDEOEXPORT

environment

variable

413

DB2VIDEOPATH

environment

variable

413

DB2VIDEOPLAYER

environment

variable

103

DB2VIDEOSTORE

environment

variable

413

DB2VIDEOTEMP

environment

variable

413

DBaAdminGetInaccessibleFiles

API

220

DBaAdminGetReferencedFiles

API

222

DBaAdminIsFileReferenced

API

224

DBaDisableColumn

API

226

DBaDisableServer

API

228

DBaDisableTable

API

229

DBaEnableColumn

API

231

DBaEnableServer

API

233

DBaEnableTable

API

235

DBaGetError

API

237

DBaGetInaccessibleFiles

API

238

DBaGetReferencedFiles

API

240

DBaIsColumnEnabled

API

242

DBaIsFileReferenced

API

244

DBaIsServerEnabled

API

246

DBaIsTableEnabled

API

247

DBaPlay

API

249

DBaPrepareAttrs

API

251

DBCLOB

(double-byte

character

large

object)

11

DBiAdminGetInaccessibleFiles

API

252

DBiAdminGetReferencedFiles

API

254

DBiAdminIsFileReferenced

API

256

DBiBrowse

API

258

DBiDisableColumn

API

260

DBiDisableServer

API

262

DBiDisableTable

API

263

DBiEnableColumn

API

265

DBiEnableServer

API

267

DBiEnableTable

API

269

DBiGetError

API

271

DBiGetInaccessibleFiles

API

272

DBiGetReferencedFiles

API

274

DBiIsColumnEnabled

API

276

DBiIsFileReferenced

API

278

DBiIsServerEnabled

API

280

DBiIsTableEnabled

API

281

DBiPrepareAttrs

API

283

DBRM

(Database

Request

Module)

67

DBvAdminGetInaccessibleFiles

API

284

DBvAdminGetReferencedFiles

API

286

DBvAdminIsFileReferenced

API

288

DBvDisableColumn

API

290

DBvDisableServer

API

292

DBvDisableTable

API

293

DBvEnableColumn

API

295

DBvEnableServer

API

297

DBvEnableTable

API

299

DBvGetError

API

301

DBvGetInaccessibleFiles

API

302

DBvGetReferencedFiles

API

304

DBvIsColumnEnabled

API

306

DBvIsFileReferenced

API

308

DBvIsServerEnabled

API

310

DBvIsTableEnabled

API

311

DBvPlay

API

313

DBvPrepareAttrs

API

315

definition

side

deck

68

DELETE

QBIC

CATALOG

command

115,

364

deleting

data

from

a

table

27

diagnostic

information

387

directionality

17

DISABLE

COLUMN

command

365

DISABLE

SERVER

command

366

DISABLE

TABLE

command

367

display

a

video

frame

103

displaying

a

thumbnail

105

displaying

an

image

103

distinct

type

12

DMBSETUP,

editing

and

running

124

DSNALI

69

Duration

UDF

179

E
embedded

SQL,

preparing

67

ENABLE

COLUMN

command

368

ENABLE

SERVER

369

ENABLE

TABLE

command

371

enabling

database

servers

42

environment

variables

103

DB2AUDIOEXPORT

413

DB2AUDIOPATH

413

DB2AUDIOPLAYER

103

DB2AUDIOSTORE

413

DB2AUDIOTEMP

413

DB2IMAGEBROWSER

103

DB2IMAGEEXPORT

413

DB2IMAGEPATH

413

DB2IMAGESTORE

413

DB2IMAGETEMP

413

DB2VIDEOEXPORT

413

DB2VIDEOPATH

413

DB2VIDEOPLAYER

103

DB2VIDEOSTORE

413

436

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

environment

variables

(continued)
DB2VIDEOTEMP

413

external

security

41

F
features,

QBIC

query

122

file

64

finding

files

referenced

by

tables

53

name

(that

contains

object)

180

names,

relative

66

names,

specifying

66

storing

from

client

77

transmitting

an

object

between

a

table

and

64

transmitting

an

object

to

or

from

client

65

updating

from

client

96

file

reference

variable

65

Filename

UDF

180

FindInstrument

UDF

181

FindTrackName

UDF

182

Format

UDF

183

formats

of

objects

71

handled

by

DB2

Extenders

71

identifying

for

storage

79

identifying

for

update

98

retrieving

video

157

using

your

own

for

storage

81

using

your

own

for

update

99

FrameRate

UDF

184

G
GET

EXTENDER

STATUS

command

373

GET

INACCESSIBLE

FILES

command

374

GET

QBIC

CATALOG

INFO

command

112,

376

GET

REFERENCED

FILES

command

377

GetInstruments

UDF

185

GetTrackNames

UDF

186

goal

mode

32

GRANT

command

379

H
handle

15

header

files

63

Height

UDF

187

hierarchical

file

system

(HFS)

12

histogram

color

16

description

16

feature

name

111

I
image

3

average

color

16

colors

in

(number

of)

193

comment

attribute

155

compression

type

72

conversion

options

72

displaying

103

image

(continued)
file

name

180

format

attribute

183

formats

71

height

187

height

conversion

72

histogram

color

16

identifying

format

for

storage

79

identifying

format

for

update

98

import

time

189

importer

188

number

of

colors

in

193

pixel

16

positional

color

17

query

by

content

107

retrieving

84

rotation

72

score

(QBIC)

132

size

210

storing

73

texture

17

time

stored

189

time

updated

216

update

time

216

updater

215

updating

90

user

ID

of

person

who

stored

188

user

ID

of

person

who

updated

215

width

217

width

conversion

72

Image

Extender

4

DBaPrepareAttrs

API

251

DBiAdminGetInaccessibleFiles

API

252

DBiAdminGetReferencedFiles

API

254

DBiAdminIsFileReferenced

API

256

DBiBrowse

API

258

DBiDisableColumn

API

260

DBiDisableServer

API

262

DBiDisableTable

API

263

DBiEnableColumn

API

265

DBiEnableServer

API

267

DBiEnableTable

API

269

DBiGetError

API

271

DBiGetInaccessibleFiles

API

272

DBiGetReferencedFiles

API

274

DBiIsColumnEnabled

API

276

DBiIsFileReferenced

API

278

DBiIsServerEnabled

API

280

DBiIsTableEnabled

API

281

DBiPrepareAttrs

API

283

DBvPrepareAttrs

API

315

overview

4

UDFs

147

UDTs

147

Importer

UDF

188

ImportTime

UDF

189

include

files

63

description

63

Index

437

J
job

DMBSETUP,

editing

and

running

124

L
large

object

(LOB)

11

description

11

displaying

103

playing

103

transmitting

64

link

editing

68

LOB

(large

object)

11

description

11

displaying

103

locator

65

playing

103

transmitting

64

locator

65

M
MaxBytesPerSec

UDF

190

media

files

417

metadata

tables

14

description

14

security

32

MIDI

instrument

185

MMDB_STORAGE_TYPE_EXTERNAL

79

when

storing

79

when

updating

98

MMDB_STORAGE_TYPE_INTERNAL

79

when

storing

79

when

updating

98

N
Notices

427

NumAudioTracks

UDF

191

number

of

bits

to

represent

image

72

NumChannels

UDF

192

NumColors

UDF

193

NumFrames

UDF

194

NumVideoTracks

UDF

195

O
object

11

alignment

of

151

aspect

ratio

of

152

attributes,

retrieving

88

audio

channels

(number

of)

192

audio

tracks

(number

of)

191

bits

per

sample

of

audio

153

colors

in

image

(number

of)

193

comment

155

compression

format

of

video

157

data

transfer

rate

of

audio

154

data

transfer

rate

of

video

190

description

11

displaying

103

object

(continued)
duration

of

audio

or

video

179

file

name

180

format

183

formats

71

frame

rate

of

video

184

frames

in

video

(number

of)

194

height

187

import

time

189

importer

188

number

of

audio

channels

192

number

of

audio

tracks

191

number

of

colors

in

image

193

number

of

frames

in

video

194

number

of

video

tracks

195

playing

103

playing

time

of

audio

or

video

179

retrieving

84

sampling

rate

of

audio

209

security

32

size

210

storing

73

throughput

of

audio

154

throughput

of

video

184,

190

thumbnail

211

time

stored

189

time

updated

216

transmitting

64

update

time

216

updater

215

updating

90

user

ID

of

person

who

stored

188

user

ID

of

person

who

updated

215

video

tracks

(number

of)

195

width

217

object

orientation

11

ODBC

dynamic

link

library

68

ODBC

environment

67

OPEN

QBIC

CATALOG

command

110,

381

operating

environments

for

DB2

Extenders

9

overloaded

function

names

13

overview

of

DB2

Extenders

3

overwrite

indicator

86

P
package,

binding

67

performance

objectives

32

photometric

(image

inversion)

72

pixel

16

planning

considerations

31

platforms

for

DB2

Extenders

9

playing

a

video

103

playing

an

audio

103

playing

time

of

audio

or

video

179

positional

color

17

description

17

feature

name

111

precompiling

67

prelinking

68

preparing

a

DB2

extender

application

67

438

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Q
QbAddFeature

API

111,

316

QbCatalogColumn

API

113,

318

QbCloseCatalog

API

115,

320

QbColor

126

QbColorFeatureClass

111

QbColorHistogramFeatureClass

111

QbCreateCatalog

API

108,

321

QbDeleteCatalog

API

115,

323

QbDrawFeatureClass

111

QbGetCatalogInfo

API

112,

325

QbHistogramColor

127

QBIC

catalog

16

QBIC

query

121

adding

a

feature

to

125

creating

125

data

source

125

deleting

130

description

121

issuing

130

object

124

removing

a

feature

from

130

retrieving

information

about

129

saving

128

string

122

QbImageSource

126

QbListFeatures

112

QbListFeatures

API

327

QbOpenCatalog

API

110,

329

QbQueryAddFeature

API

125,

331

QbQueryCreate

API

125,

333

QbQueryDelete

API

130,

334

QbQueryGetFeatureCount

API

129,

335

QbQueryGetString

API

128,

336

QbQueryListFeatures

API

129,

337

QbQueryNameCreate

API

339

QbQueryNameDelete

API

130,

341

QbQueryNameSearch

API

131,

342

QbQueryRemoveFeature

API

130,

344

QbQuerySearch

API

131,

346

QbQuerySetFeatureData

API

125,

348

QbQuerySetFeatureWeight

API

350

QbQueryStringSearch

API

131,

351

QbReCatalogColumn

API

114,

353

QbRemoveFeature

API

112,

355

QbScoreFromName

UDF

132,

196

QbScoreFromStr

UDF

132,

198

QbScoreTBFromName

UDF

132,

199

QbScoreTBFromStr

UDF

132,

201

QbTextureFeatureClass

111

Query

by

Image

Content

(QBIC)

16

catalog

16

QbAddFeature

API

316

QbCatalogColumn

API

318

QbCloseCatalog

API

320

QbCreateCatalog

API

321

QbDeleteCatalog

API

323

QbGetCatalogInfo

API

325

QbListFeatures

API

327

QbOpenCatalog

API

329

QbQueryAddFeature

API

331

Query

by

Image

Content

(QBIC)

(continued)
QbQueryCreate

API

333

QbQueryDelete

API

334

QbQueryGetFeatureCount

API

335

QbQueryGetString

API

336

QbQueryListFeatures

API

337

QbQueryNameCreate

API

339

QbQueryNameDelete

API

341

QbQueryNameSearch

API

342

QbQueryRemoveFeature

API

344

QbQuerySearch

API

346

QbQuerySetFeatureData

API

348

QbQuerySetFeatureWeight

API

350

QbQueryStringSearch

API

351

QbReCatalogColumn

API

353

QbRemoveFeature

API

355

steps

107

query

string,

QBIC

122

reusing

128

query,

QBIC

121

building

121

issuing

130

QUIT

command

382

R
recovery

35

reference

variable,

file

65

relative

file

names

66

REMOVE

QBIC

FEATURE

command

112,

383

Replace

UDF

203

ReplaceA

UDF

206

retrieving

an

object

84

return

codes

387

return

codes

(SQLSTATE)

388

REVOKE

command

384

rotation

of

image

72

run-time

environment

4

S
sample

media

files

417

sample

programs

417

sampling

rate

of

audio

209

SamplingRate

UDF

209

scaling

factor

72

schema

name

13

score,

image

(QBIC)

132

security

32

segment

65

server

file

64

retrieving

to

86

storing

from

78

transmitting

an

object

between

a

table

and

64

transmitting

an

object

to

64

updating

from

97

service

class

31

SET

CURRENT

PATH

statement

13

side

deck

68

signature,

function

14

size

of

object

210

Index

439

Size

UDF

210

Software

Developers

Kit

(SDK)

4

SQLSTATE

codes

388

storing

an

object

73

string,

QBIC

query

122

T
tables

45

disabling

49

enabling

45

TERMINATE

command

386

Text

Extender

4

texture

17

description

17

feature

name

111

throughput

of

audio

154

throughput

of

video

190

thumbnail

82

displaying

105

storing

82

updating

100

Thumbnail

UDF

211

TicksPerQNote

UDF

213

TicksPerSec

UDF

214

trace

facility

410

track

names,

MIDI

186

track

number

of

MIDI

instrument

181

track

number,

MIDI

182

tracks

191

number

of

audio

191

number

of

video

195

transmitting

large

objects

64

trigger

14

U
UDF

(user-defined

function)

12

AlignValue

151

AspectRatio

152

BitsPerSample

153

BytesPerSec

154

Comment

155

CompressType

157

Content

158

ContentA

162

current

path

13

DB2Audio

164

DB2AudioA

166

DB2Image

169

DB2ImageA

172

DB2Video

174

DB2VideoA

176

description

12

Duration

179

Filename

180

FindInstrument

181

FindTrackName

182

Format

183

FrameRate

184

GetInstruments

185

UDF

(user-defined

function)

(continued)
GetTrackNames

186

Height

187

Importer

188

ImportTime

189

MaxBytesPerSec

190

names

13

NumAudioTracks

191

NumChannels

192

NumColors

193

NumFrames

194

NumVideoTracks

195

overloaded

13

QbScoreFromName

196

QbScoreFromStr

198

QbScoreTBFromName

199

QbScoreTBFromStr

201

reference

147

Replace

203

ReplaceA

206

SamplingRate

209

signature

14

Size

210

Thumbnail

211

TicksPerQNote

213

TicksPerSec

214

Updater

215

UpdateTime

216

Width

217

UDT

(user-defined

type)

12

description

12

names

13

Unicode

support

70

Updater

UDF

215

UpdateTime

UDF

216

updating

an

object

90

user-defined

function

12

AlignValue

151

AspectRatio

152

BitsPerSample

153

BytesPerSec

154

Comment

155

CompressType

157

Content

158

ContentA

162

current

path

13

DB2Audio

164

DB2AudioA

166

DB2Image

169

DB2ImageA

172

DB2Video

174

DB2VideoA

176

description

12

Duration

179

Filename

180

FindInstrument

181

FindTrackName

182

Format

183

FrameRate

184

GetInstruments

185

GetTrackNames

186

440

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

user-defined

function

(continued)
Height

187

Importer

188

ImportTime

189

MaxBytesPerSec

190

names

13

NumAudioTracks

191

NumChannels

192

NumColors

193

NumFrames

194

NumVideoTracks

195

overloaded

13

QbScoreFromName

196

QbScoreFromStr

198

QbScoreTBFromName

199

QbScoreTBFromStr

201

reference

147

Replace

203

ReplaceA

206

SamplingRate

209

signature

14

Size

210

Thumbnail

211

TicksPerQNote

213

TicksPerSec

214

Updater

215

UpdateTime

216

Width

217

user-defined

type

(UDT)

12

description

12

names

13

V
video

3

alignment

of

151

aspect

ratio

of

152

audio

channels

in

(number

of)

192

audio

tracks

in

(number

of)

191

comment

attribute

155

compression

format

157

data

transfer

rate

190

duration

179

file

name

180

format

attribute

183

formats

71

frame

rate

184

frames

in

(number

of)

194

height

187

identifying

format

for

storage

79

identifying

format

for

update

98

import

time

189

importer

188

number

of

audio

channels

in

192

number

of

audio

tracks

in

191

number

of

frames

in

194

number

of

video

tracks

in

195

playing

103

playing

time

179

retrieving

84

size

210

video

(continued)
storing

73

throughput

(bytes

per

second)

190

throughput

(frame

rate)

184

thumbnail

211

time

stored

189

time

updated

216

update

time

216

updater

215

updating

90

user

ID

of

person

who

stored

188

user

ID

of

person

who

updated

215

video

tracks

in

(number

of)

195

width

217

Video

Extender

4

DBvAdminGetInaccessibleFiles

API

284

DBvAdminGetReferencedFiles

API

286

DBvAdminIsFileReferenced

API

288

DBvDisableColumn

API

290

DBvDisableServer

API

292

DBvDisableTable

API

293

DBvEnableColumn

API

295

DBvEnableServer

API

297

DBvEnableTable

API

299

DBvGetError

API

301

DBvGetInaccessibleFiles

API

302

DBvGetReferencedFiles

API

304

DBvIsColumnEnabled

API

306

DBvIsFileReferenced

API

308

DBvIsServerEnabled

API

310

DBvIsTableEnabled

API

311

DBvPlay

API

313

overview

4

UDFs

147

UDTs

147

W
wait

indicator

105

width

of

object

217

Width

UDF

217

Workload

Manager

(WLM)

31

Index

441

442

Image,

Audio,

and

Video

Extenders

Administration

and

Programming

Readers’

Comments

—

We’d

Like

to

Hear

from

You

DB2

Universal

Database

for

OS/390

and

z/OS

Image,

Audio,

and

Video

Extenders
Administration

and

Programming

Version

7

Publication

No.

SC26-9947-01

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

SC26-9947-01

SC26-9947-01

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

PLACE

POSTAGE

STAMP

HERE

IBM

Deutschland

Entwicklung

GmbH

Information

Development,

Dept

0446

Schoenaicher

Strasse

220

71032

Boeblingen

Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program

Number:

5675-DB2

SC26-9947-01

	Contents
	Figures
	Tables
	About this book
	Who should use this book
	How to use this book
	Highlighting conventions
	How to read the syntax diagrams
	Accessibility

	Part 1. Introduction
	Chapter 1. Overview
	Exploiting DB2
	Powerful new ways to search for information
	The DB2 Extenders
	The SDK and run-time environments
	Using the extenders
	Examples
	Example 1: Retrieving a video by its characteristics
	Example 2: Searching for images by content

	Operating environments

	Chapter 2. DB2 extender concepts
	Object-oriented concepts
	Large objects
	User-defined types
	User-defined functions
	UDF and UDT names
	Current path
	Overloaded function names

	Triggers

	Extender data structures
	Administrative support tables
	Handles
	QBIC catalogs

	Chapter 3. How the extenders work
	An extender scenario
	Preparing a database server
	Preparing a table
	Altering a table
	Inserting data into a table
	Selecting data from a table
	Displaying and playing objects
	Updating data in a table
	Deleting data from a table

	Part 2. Administering image, audio, and video data
	Chapter 4. Planning for DB2 Extenders
	Workload management considerations
	The number of WLM environments
	Performance objectives for WLM environments

	Security considerations
	Access to image, audio, and video objects in tables
	Access to QBIC catalog tables
	Access to content in files
	EXECUTE authority
	The MMDBSYS user ID
	Authority to administer the extenders

	Table space considerations
	Backup and recovery considerations

	Chapter 5. Administration overview
	Administration tasks you can perform with the DB2 Extenders

	Chapter 6. Preparing data objects for extender data
	Enabling database servers
	Specifying table space
	Specifying WLM environments
	Specifying external security
	Examples

	Enabling tables
	Enabling columns
	Disabling data objects

	Chapter 7. Tracking data objects and media files
	Checking the status of data objects
	Finding table entries that reference files
	Finding files referenced by table entries
	Checking if media files exist

	Chapter 8. Granting and revoking privileges on administrative support tables
	Part 3. Programming for image, audio, and video data
	Chapter 9. Programming overview
	Using extender UDFs and APIs
	Tasks you can perform with extender UDFs and APIs
	Sample table for extender examples
	Before you begin programming for DB2 Extenders
	Including extender definitions
	Specifying UDF and UDT names
	Transmitting large objects
	If the object is transmitted between a table and a server file
	If the object is transmitted to or from a client buffer
	Using LOB locators
	If the object is transmitted to or from a client file
	Specifying file names when you transmit objects

	Handling return codes

	Preparing a DB2 extender application
	Preparing a DB2 application
	Additional steps for DB2 extender applications
	Binding files for workstation clients
	Including MMDBSYS_CLIENT packages
	Using the DSNALI call to allocate resources
	Configuring the ODBC Initialization file

	Unicode support

	Chapter 10. Storing, retrieving, and updating objects
	Image, audio, and video formats
	Image conversion options
	Storing an image, audio, or video object
	DB2Image, DB2Audio, and DB2Video UDF formats
	DB2ImageA, DB2AudioA, and DB2VideoA UDF formats
	Storing an object that resides on the client
	Storing an object that resides on the server
	Specifying database or file storage
	Identifying the format for storage
	Identifying the format for storage without conversion
	Identifying the formats and conversion options for storage with format conversion

	Storing an object with user-supplied attributes
	Storing a thumbnail (image and video only)
	Storing a comment

	Retrieving an image, audio, or video object
	Content UDF formats for retrieval
	Retrieving an object to the client
	Retrieving an object to a client without format conversion
	Retrieving an image to a client with conversion

	Retrieving an object to a server file
	Retrieving and using attributes
	Retrieving comments

	Updating an image, audio, or video object
	Content UDF formats for updating
	ContentA UDF formats for updating
	Replace UDF formats for updating
	ReplaceA UDF formats for updating
	Updating an object from the client
	Updating an object from the server
	Specifying database or file storage for updates
	Identifying the format for update
	Identifying the format for update without conversion
	Identifying the formats and conversion options for update with format conversion

	Updating an object with user-supplied attributes
	Updating a thumbnail (image and video only)
	Updating a comment

	Chapter 11. Displaying or playing an image, audio, or video object
	Using the display or play APIs
	Identifying a display or play program
	Specifying BLOB or file content
	Specifying a wait indicator

	Displaying a thumbnail-size image or video frame
	Displaying a full-size image or video frame
	Playing an audio or video

	Chapter 12. Querying images by content
	How to query by image content
	Managing QBIC catalogs
	Creating a QBIC catalog
	Opening a QBIC catalog
	Adding a feature to a QBIC catalog
	Removing a feature from a QBIC catalog
	Retrieving information about a QBIC catalog
	Manually cataloging a column of images
	Recataloging images
	Closing a QBIC catalog
	Deleting a QBIC catalog
	QBIC catalog sample program

	Building queries
	Specifying a query string
	Feature value
	Feature weight
	Examples

	Using a query object
	Editing and running job DMBSETUP
	Creating a query object
	Adding a feature to a query object
	Specifying the data source for a feature in a query object
	Setting the weight of a feature in a query object
	Saving and reusing a query string
	Retrieving information about a query object
	Removing a feature from a query object
	Deleting a query object

	Issuing queries by image content
	Querying images
	Retrieving an image score
	Retrieving the score of a single image
	Retrieving the score of multiple images

	QBIC query sample program

	Part 4. Reference
	Chapter 13. User-defined types (distinct types) and user-defined functions
	Schema
	User-defined types (distinct types)
	User-defined functions
	AlignValue
	AspectRatio
	BitsPerSample
	BytesPerSec
	Comment
	CompressType
	Content
	ContentA
	DB2Audio
	DB2AudioA
	DB2Image
	DB2ImageA
	DB2Video
	DB2VideoA
	Duration
	Filename
	FindInstrument
	FindTrackName
	Format
	FrameRate
	GetInstruments
	GetTrackNames
	Height
	Importer
	ImportTime
	MaxBytesPerSec
	NumAudioTracks
	NumChannels
	NumColors
	NumFrames
	NumVideoTracks
	QbScoreFromName
	QbScoreFromStr
	QbScoreTBFromName
	QbScoreTBFromStr
	Replace
	ReplaceA
	SamplingRate
	Size
	Thumbnail
	TicksPerQNote
	TicksPerSec
	Updater
	UpdateTime
	Width

	Chapter 14. Application programming interfaces
	DBaAdminGetInaccessibleFiles
	DBaAdminGetReferencedFiles
	DBaAdminIsFileReferenced
	DBaDisableColumn
	DBaDisableServer
	DBaDisableTable
	DBaEnableColumn
	DBaEnableServer
	DBaEnableTable
	DBaGetError
	DBaGetInaccessibleFiles
	DBaGetReferencedFiles
	DBaIsColumnEnabled
	DBaIsFileReferenced
	DBaIsServerEnabled
	DBaIsTableEnabled
	DBaPlay
	DBaPrepareAttrs
	DBiAdminGetInaccessibleFiles
	DBiAdminGetReferencedFiles
	DBiAdminIsFileReferenced
	DBiBrowse
	DBiDisableColumn
	DBiDisableServer
	DBiDisableTable
	DBiEnableColumn
	DBiEnableServer
	DBiEnableTable
	DBiGetError
	DBiGetInaccessibleFiles
	DBiGetReferencedFiles
	DBiIsColumnEnabled
	DBiIsFileReferenced
	DBiIsServerEnabled
	DBiIsTableEnabled
	DBiPrepareAttrs
	DBvAdminGetInaccessibleFiles
	DBvAdminGetReferencedFiles
	DBvAdminIsFileReferenced
	DBvDisableColumn
	DBvDisableServer
	DBvDisableTable
	DBvEnableColumn
	DBvEnableServer
	DBvEnableTable
	DBvGetError
	DBvGetInaccessibleFiles
	DBvGetReferencedFiles
	DBvIsColumnEnabled
	DBvIsFileReferenced
	DBvIsServerEnabled
	DBvIsTableEnabled
	DBvPlay
	DBvPrepareAttrs
	QbAddFeature
	QbCatalogColumn
	QbCloseCatalog
	QbCreateCatalog
	QbDeleteCatalog
	QbGetCatalogInfo
	QbListFeatures
	QbOpenCatalog
	QbQueryAddFeature
	QbQueryCreate
	QbQueryDelete
	QbQueryGetFeatureCount
	QbQueryGetString
	QbQueryListFeatures
	QbQueryNameCreate
	QbQueryNameDelete
	QbQueryNameSearch
	QbQueryRemoveFeature
	QbQuerySearch
	QbQuerySetFeatureData
	QbQuerySetFeatureWeight
	QbQueryStringSearch
	QbReCatalogColumn
	QbRemoveFeature

	Chapter 15. Administration commands for the client
	Entering DB2 Extender administration commands
	Getting online help for DB2 Extender commands
	ADD QBIC FEATURE
	CATALOG QBIC COLUMN
	CLOSE QBIC CATALOG
	CREATE QBIC CATALOG
	DELETE QBIC CATALOG
	DISABLE COLUMN
	DISABLE SERVER
	DISABLE TABLE
	ENABLE COLUMN
	ENABLE SERVER
	ENABLE TABLE
	GET EXTENDER STATUS
	GET INACCESSIBLE FILES
	GET QBIC CATALOG INFO
	GET REFERENCED FILES
	GRANT
	OPEN QBIC CATALOG
	QUIT
	REMOVE QBIC FEATURE
	REVOKE
	TERMINATE

	Chapter 16. Diagnostic information
	Handling UDF return codes
	Handling API return codes
	SQLSTATE codes
	Messages
	Diagnostic tracing
	Start tracing
	Stop tracing
	Reformat trace information

	Appendix A. Setting environment variables for DB2 Extenders
	How environment variables are used to resolve file names
	How environment variables are used to identify display or play programs
	Setting environment variables
	Setting environment variables in z/OS
	Setting environment variables in AIX and Solaris clients
	Setting environment variables in Windows clients

	Appendix B. Sample programs and media files
	Sample programs
	Sample image, audio, and video files

	Notices
	Programming interface information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

